PRO-GRACE-workshop

MPG

WORLDVEG

Introduction to metabolomics

- Sample preparation
- Data acquisiton
- Data processing
- Metabolomics pipeline

What is Metabolomics?

- Metabolomics is an approach of study that involves the comprehensive analysis of small molecules, known as metabolites, present in biological samples.
- The world of plant metabolites displays remarkable diversity, with over one million distinct chemical structures (Wurtzel and Kutchan 2016).

Plant Metabolism

- The world of plant metabolites displays remarkable diversity, with over one million distinct chemical structures (Wurtzel and Kutchan 2016).
- Currently, there has been a growing utilization of analytical technologies like metabolomics for the characterization of metabolites within biological specimens.
 - Sugars
 - Nucleotides
 - Organic acids
 - Ketones
 - Aldehydes
 - Amines
 - Amino acids
 - Small peptides
 - Lipids
 - Steroids
 - Terpenes
 - Alkaloids
 - Drugs (xenobiotics)

Schematic metabolomics workflow

- 1. Experimental design and sampling
 - Preparation of freeze-dried plant material
 - Preparation of fresh frozen plant material
- 2. Metabolic profiling
 - Primary metabolites (GC-MS- gas chromatography)
 - Secondary metabolites (LC-MS- liquid chromatography)
 - Lipids (LC-MS)
- 3. Chromatogram processing and data normalization/analysis
- 4. Creating the metabolite databases

Metabolite profiling by gas chromatography mass spectrometry

 GC-MS technologies allow the identification and robust quantification of a few hundred metabolites within a single extract (Roessner, U. et al, 2004, Plant cell).

Fernie et al, 2004, Nature reviews molecular cell biology

GC-MS is allow to measure the stable compounds at high • temperature, volatile compounds.

Metabolite profiling by liquid chromatography mass spectrometry

- Comparing to GC-MS, LC–MS can be adapted to a wider array of molecules, including a range of secondary metabolites such as alkaloids, flavonoids, glucosinolates, isoprenes, oxylipins, phenylpropanoids, pigments and saponins (Aharoni, A. et al, 2003, Plant Cell).
- LC-MS allows to measure unstable and stable compounds at high temperature, non-volatile compounds, high molecular weight.

Chromatogram processing and identification

- Library matching and quantification of the metabolites.
- Data analysis and creating the metabolomics datasets.

Activity 1

Refinement and demonstration of phytosanitary methods for surveillance during PGR ex situ and in situ management and phytosanitation of contaminated unique material (D3.5)

- Make available crop biodiversity while avoiding the spread of quarantine pathogens
- Comply with phytosanitary regulations

Optimize seed treatment to prevent contamination with seed-borne pathogens

1) Compile information on phytosanitary seed treatment for plant pathogens - focus on virus and viroids

- 2) Testing current methods used to remove viroids from solanaceaous seeds:
- Different concentrations and duration of hydrochloric acid and trisodium phosphate
- Heat treatment

Viroids:

- Circular, single-stranded RNA
- Not protein encoding
- Rolling-circle replication in host nucleus or chloroplast

Elimination of *Potato spindle tuber viroid* and *Columnea latent viroid* from tomato seed

Treatment		Viroid testing (positive No./ sub-sample No.)					
		Replicate I		Replicate II		Replicate III	
		Pospi1F/ Pospi1R ¹	CLVd ²	Pospi1F/ Pospi1R	CLVd	Pospi1F/ Pospi1R	CLVd
1	Not treated	5/5 ³	2/5	5/5	2/5	5/5	2/5
2	0.5 N HCl ⁴ x 15 min + 10% TSP ⁵ x 1 hr	0/5	0/5	4/5	0/5	1/5	0/5
3	20% Clorox ⁶ x 15 min + 80°C x 24 hrs	2/5	0/5	3/5	0/5	3/5	0/5
4	0.5 N HCl x 15 min + 10% TSP x 1 hr + 80°C x 24 hrs	0/5	0/5	1/5	0/5	0/5	0/5

¹ Pospi1F/Pospi1R primer set (Verhoeven et al., 2004); ² TARI Taiwan

³ each sub-sample contains about 400 seeds; ⁴ HCI: Hydrochloric acid; ⁵ TSP: Trisodium phosphate; ⁶ Clorox: domestic bleach

Optimize identification methods for seed-borne pathogens

 Test and compare sampling and detection methods for seed-borne pathogens with a focus on virus and viroids of Solanaceae

Target pathogens:

- *Tomato brown rugose fruit virus* (ToBRFV)
- *Pepper mild mottle virus* (PMMoV)
- Tomato mottle mosaic virus (ToMMV)
- Pepino mosaic virus (PepMV)
- Cucumber green mottle mosaic virus (CGMMV)
- Other new emerging pathogens
- Test detection method (RT-PCR, PCR, RT-LAMP, LAMP) on at least 100 Solanaceous seed lots (infected/treated/control)
- Develop and publish a Standard Operation Procedure (SOP) for optimized pathogen screening in seed lots

Outputs

- Seed treatment protocol compilation
- Best combinations of seed treatments to eliminate seed borne viroids and viruses without harming seed viability
- SOP for phytosanitary seed treatment developed and shared
- Seed treatment manual for training purposes
- Efficient methods to detect quarantine seed-borne pathogens such as viroids and viruses (at least 5 target pathogens)
- Methods validated on >100 seed samples and ready for routine application
- Strategy to improve the phytosanitary status of genebank collections

Outcome

Improved availability of unique Solanaceae genetic resources from ex situ and in situ collections for research and breeding