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Using and reusing indoor and multisite field experiments for assessing the 
genetic variability of plant responses to environment

- Tens of field experiments in contrasting environmental scenarios: 
capture the responses of yield to environmental conditions for each genotype

- Experiments in field phenotyping platforms with different treatments: 
capture integrated traits related to differences in yield responses

- Experiments in indoor platforms with treatments
disentangle environmental effects at phenotyping and omic scales

Impossible to collect such datasets in one single project : needs data reuse

Assessing the responses to environmental conditions of panels of genotypes 
needs hundreds of genotypes (accessions) tested in: 



For instance, 250 maize hybrids
- Yield in 24 field experiments

- Traits in 10 detailed experiments in phenotyping platforms 

PhenoField Arvalis, Ouzouer

DiaPhen Montpellier

- Traits in 3 equipped fields

Impossible to collect such datasets in one single project : needs data reuse



Large datasets, several uses

Diversity panel: 250 unrelated hybrids

Phenotyping platform

Genetic variability of traits/
omics

Genetic variability of yield

Field network

Physiology
Platform

2019

Functional genomics, Physiology,
Platform

2024Maistrieux, Chaumont

Stomatal conductance with Penman Monteith equation

GWAS of PIP transcripts
Genetics, Field

2016

Genomics, modelling
Field + (platform)

2019

GP of response curves to environment

Environment-specific yield QTLs

Process based modelling, Field

Process based modelling,
Field + platform

2020

2018

Traits and yield prediction 2050 vs present

Modelling traits and yield of 100s genotypes



Large datasets, several uses

Genetic progress panel: 64 hybrids commercialized from 1950 to 2010

C Welcker

Phenotyping platform

Genetic variability of traits/
omics

Genetic variability of yield

Field network

20222019

Ecophysiology, 3D modelling
Platform

Genetics, Ecophysiology
Field + platform

Claude Welcker, Nadir Abusamra Spencer…François 
Tardieu

Architectural traits + genetic progress Selection for yield improved architecture 
but not physiological drought responses



Large datasets, several uses

Two panels (for training) + one (for validation) 

Phenotyping platform

Genetic variability of traits/
omics in phenotyping platform

Genetic variability of yield in a
network of fields

Field network

Jugurta
Bouidghagen

2023

Genetics Genomics,ecophysiology
Field + platform
Indoor vs field traits, genomic prediction



1 – The same datasets were used for addressing different questions
genomics, genetics, imaging, crop modelling, methodology
Success story per se:
Datasets generated in 2014-2017 resulted in 12 papers till 2024, 

+ at least 6 in prep, + many afterwards

Partial conclusion 1



Typical joint analyses across experiments and scales



16 fields
X

2 years
X

2 W treatments

Typical joint analyses : Envirotyping

Millet et al. 2016 Plant Phys

Hot dayCool Hot day night

WW Rec Term

Environmental scenarios (clustering experiments)

WD

E. Millet



16 fields
X

2 years
X

2 W treatments

Hot dayCool Hot day night

WW Rec Term

Environmental scenarios (clustering experiments)

WD

Parent et al 2018 PNAS

5% fequency 2020, 
25% frequency 2050

90% fequency 2020, 
20% frequency 2050

Typical joint analyses 1 : Envirotyping + climate change



Italo Granato

Traits in platform

Yield per 
environmental scenario

Anthesis
Architecture

RHPAD

Stomatal
conductance

Light 
interception Leaf area WUE Sensitivity 

growh

WW Cool

WW high VPD

WW Hot night

WD Cool

WD Hot 

Typical joint analyses 1 : Envirotyping + genomic correlations trait - yield



r in genetic
correlation

Italo Granato

0,4 0,3 0,2 0 -0,2 -0,3 -0,4

Traits in platform

Yield per 
environmental scenario

Anthesis
Architecture

RHPAD

Stomatal
conductance

Light 
interception Leaf area WUE Sensitivity 

growh

WW Cool

WW high VPD

WW Hot night

WD Cool

WD Hot 

Some traits well correlated with yield: architecture, stomatal conductance
BUT correlations depend on climatic scenarios for stomatal conductance

Typical joint analyses 1 : Envirotyping + genomic correlations trait - yield
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Bouidghaghen et al 2023 Nature Com

Typical joint analyses 2: Do indoor phenotyping platforms represent field ? 
(a thesis with 90% data in databases)
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Bouidghaghen et al 2023 Nature Com
Traits translate from indoor platform to field, with modelling

Typical joint analyses 2: Do indoor phenotyping platforms represent field ? 
(a thesis with 90% data in databases)



Leaf area index
(Field, Drone)

Images, inversion of the Prosail model

No correlation between leaf area indoor and in fields BUT

Bouidghaghen et al 2023 Nature Com
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Simulations based on 
- Genotypic values (platform)

Phenology + leaf number
Leaf growth rate

- Environmental conditions in the field

Traits translate from indoor platform to field, with modelling

Typical joint analyses 2: Do indoor phenotyping platforms represent field ? 
(a thesis with 90% data in databases)



1. Platform, 250 geno

Thermal time

h² = 0.9

Progression of 
phenology

Millet et al.2019  Nature Genetics

Typical joint analyses 3: Genomic prediction of yield

C Welcker

E. Millet
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2. Field, Conditions felt by 250 genotypes
in 25 fields

1. Platform, 250 geno

Thermal time

Progression of 
phenology

h² = 0.9

Millet et al.2019  Nature Genetics

C Welcker

E. Millet

Typical joint analyses 3: Genomic prediction of yield



16 fields
X

2 years
X

2 W treatments

Millet et al.2019  Nature GeneticsNight temperature at flowering time (°C)

Yi
el

d

1 hybrid

Light Water Temperature

Yi
el

d

252 hybrids

Typical joint analyses 3: Genomic prediction of yield
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Typical joint analyses 3: Genomic prediction of yield



1 – The same datasets were used for addressing different questions
genomics, genetics, imaging, crop modelling

Success story per se: 12 papers 2024, at least 6 in prep, + many afterwards
2 – Each question generated novel methods for statistical / modelling analysis

‘conceptual revolution’: 
- classical representation : first the question then experiments
- Here, data availability BEFORE scientific hypotheses: a posteriori protocols

Success story per se: generated novel knowledge

Typical joint analyses : partial conclusion 2

3 – Overall (synthesis):
- Data reuse is possible, necessary and fruitful

A dataset collected in 2012-2016 is used for publications in 2024, 
analysed jointly with other datasets: Increasing added value with time 

- This allowed holistic analyse of the genetic variability of plant responses to    
environmental conditions / climate change

- BUT these panels are neither maintained nor really available. HELP ?

- BUT this needs a very careful (and demanding) data management 
(Cyril Pommier’s presentation later today) 



C Welcker Ll Cabrera

Field experiments Genetic analyses

Moulon, 
A Charcosset
L Moreau

E. MilletB Parent

Platform experiments, modelling, GWAS, genomic prediction

T. Presterl A Murigneux
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