Bioinformatics tools for
identifying traits in ' PGR
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Omics technologies represent a leap forward for
the conservation, management and
characterization of PGRs.

Current PGR management does not involve the
routine use of omic tools to trace accessions
during seed regeneration or vegetative
propagation and identifying traits.

A gap between what is technically possible with
modern omics, and what is actually implemented
in routine PGRs conservation practices

Bioinformatics pipelines can help
bridge the gap
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Genotypic and phenotypic information enables
the informed selection of the most promising

genetic resources.

Depending on the genetic architectures of the
traits, entire collections can be phenotyped, or

core collections maximizing genetic diversity.

Genotypes with the highest breeding values enter
pre-breeding programs and are used in genetic
basis of

studies to elucidate the molecular
beneficial traits of PGRs.
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Integrated multi-omics i

S

Y Multi-omics refers to the integrated study of
| various "omics" fields, including genomics,
- ~— transcriptomics, proteomics, metabolomics, and
B mQTL eQTL PaTL | . epigenomics.
: Correlation ) Correlation %: a
Metabolome Transcriptome Phenome

This approach is particularly valuable for R i S
unraveling intricate networks and
pathways associated with PGRs traits
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What size should my sliding window be to define QTLs?

A simple rule of thumb is to set the window where linkage
disequilibrium decays to the genome-wide background

How LD decay is calculated?

1. Get R2 value for each marker vs all the
others (on the same chromosome or at a
certain distance) using plink

2. Use PopLDdecay

Significant
marker

Linkage equilibrium: haplotype
frequencies in a population have
the same value that they would
have if the genes at each locus
were combined at random.

Linkage disequilibrium: Non-
random association of alleles at
different loci in a given
population

LD decay analysis

marker
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The problem arises when cases disproportionally represent a genetic subgroup, resulting
(apparently) associated with the trait.

Geographic or growth habit, etc. lead to having a specific genetic variation and an effect on
the end-use of association analysis
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Main methods:

« Principal component analysis (PCA)
« Structured association (SA)

« Kinship analysis
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Multi-locus mixed models M test
MLMM (Multi-Locus Mixed Model) is an extension of 8 GenABEL
the standard mixed linear model (MLM) used in é’o i @
GWAS. The goal is to better handle polygenic = CMLM @
traits by including multiple associated loci as £ CERMAA ECMLM
cofactors, rather than testing SNPs one by one. S PATEMMAX Select
The most significant SNPs as pseudo-QTNs A 5
(covariates), then removes non-significant ones. @ G

Power | type | error

FarmCPU (Fixed and Random Model Circulating Probability Unification) separates marker
testing (fixed effect model) from population structure/kinship control (random effect
model), iteratively updating pseudo-QTNs to reduce confounding.
Iteratively updates both parts, so pseudo-QTNs and tested SNPs keep adjusting each other.

BLINK (Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway) improves
over FarmCPU by replacing the random effect with LD-based clustering and BIC model

selection, making it faster and more powerful for large datasets.
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phenotyping
field data collection/metabolites
measurements
Ext

[ outliers' removal ]

inti
.no_outliers.txt

normalization
bestNormalize
.normalized.txt

BLUEs/BLUPs/mean
inti
final.txt

SNPs/indels calling

GATK/DeepVariant
.g.vcf/.vcf

joint vcf files
GATK/GLnexus
.merged.vcf

hard filters
GATK/bcftools
-merged.hardfilters.vcf |

filtering for GWA
bcftools

Genotype

sequencing
GBS/resequencing
.fq.gz

reads cleaning
trimmomatic/fastp
.gbz

alignment to a
reference genome
BWA
.bam

.GWATfilters.vcf

test for associations
GAPIT and selected model

.pvalue_per_tested_marker.txt

imputation
Beagle/mean
.final.vcf

define QTLs
according to LD decay
bedtools

determine significance threshold
Bonferroni correction/FDR/qvalue

significant_SNPs. txt

.QTL_regions.txt

bam sort/index
samtools
.bam

Clara Parabricks (NVIDIA® Parabricks®) is a

GPU-based

suite for performing

analysis of next generation sequencing (NGS)
DNA and RNA data. It delivers results at blazing

fast speeds and low cost.
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Historical phenotypic data
collected by genebanks:

23 qualitative/pseudoqualitative
detzlnumbepeblanget SHRF: 43K
fefelkPHPERLgbRNES: 120K

SNPs filter parameters:

[ > Fitering st Mean DP 15

Max missing count (at SNP level) 5%

» Reference line '67/3° (GPE001970)

FASTQ ~

Version 4.1 (Barchi et al., 2021)
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« The G2P-SOL core collection
of Capsicum spp., consisting of
423 accessions representing the
genetic variability of a panel of
10,083 accessions.

« 393 C. annuum accessions
used for GWAS

TGTGCACTCCTCAT
CGCGGTACTATTCG

GATK Best Practices

N

Data Variant
Pre-processing ,:> Discovery

FASTQ—BAM BAM — VCF

|:> Filtering

A

A

i

|

FASTQ

i
ym=
1
BAM
VCF

SNPs quality filters:

Mean DP 15

Missing 5%

MAF 0.05

The genome sequence of the C. annuum var. annuum Zhangshugang was —

used as reference
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Pangenomics and pangenome graphs
have emerged as transformative tools,
reshaping the way we study genetic
diversity and uncover the complexity
of genomes across populations.

There is a need of new tools and
pipeline to handle graph structures
for pangenome-wide associations
analysis for identifying traits in

R
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High-level visualization

Base-level visualization

From Secomandi et al. 2025
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PG-SMA PG-SM
Tool PGGB Minigraph-Cactus
Length 2,934,734,179  2,540,649,469
Node count 141,826,052 33,186,357
Edge count 194,712,053 45,701,072
Average degree  2.75 2.75

Minimum degree 1

Maximum degree 1,073
Paths count 480 396
Steps count 3,473,585,945 635,992,212

Nodes maximum degree are the number of edges
connected to a node.

The higher the maximum degree, the more complex
the graph structure, indicating highly connected nodes.
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Pangenom
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single cell

Single cell omics allow to study cell type-specific transcriptomic and

chromatin-accessible landscapes
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Integration of single cell omics possible with different tools:
« Signac and Seurat R packages
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« GWAS and Pan-GWAS identify trait-marker associations across diverse accessions.

« Single-cell omics helps us understand in which cell types and contexts those variants act.

« Translating markers into predictive breeding power requires new strategies.
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Original breed genome wide genotypic data models
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Genomic estimate
breeding value (GEBV)

Selection
based on GEBV

A

—_— - r\ L}\
\ '\\f N4
N e
Offspring :

Training population (TP): genome wide genotypic
data and phenotypic data in training the model

Genomic Selection (GS): uses genome-wide
marker data to predict performance of
untested accessions.
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Genomic Selection Workflow in Pr:

Genomic Variation Phenotype Data

@E « Train Genomic and phenotypic data
| is split into training, validation, and

plnputs Trait Labels teSt datasets-
« and adjust ML models to optimize

- prediction.
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Select the final model for genomic
prediction.
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Near-to-present distribution Matching future distribution

Environment-of-origin data

Optimizing mobilization trajectories
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- PGRs are reservoirs of untapped alleles
for resilience, adaptation, and nutrition.

« Multi-omics, GWAS, Pan-GWAS and
single-cell omics expand our power to
identify and interpret trait associations.

« Genomic Selection leverages genome-wide
variation but predicts breeding values
early.

The future of PGRs pre-breeding: an AI-enabled
multi-omics system that turns PGRs
diversity into predictive power for future
crops.



Thank you . .-
for your attention



	Slide 1: Bioinformatics tools for identifying traits in PGR  Luciana Gaccione       
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

