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Executive Summary

Deliverable D3.5 presents the implementation and demonstration of advanced
bioinformatic workflows and services supporting the characterization and exploitation of
plant genetic resources in Europe. The work focuses on developing and validating
standardized pipelines for variant discovery, genotypic data filtering, population
structure and kinship estimation, gap analyses of genetic diversity, and association
mapping (GWAS and QTL).

The deliverable provides comprehensive protocols for SNP and structural variant calling
using next-generation sequencing (NGS) data, leveraging established tools such as
GATK, DeepVariant, and bcftools. Detailed filtering strategies are described to ensure
high-quality variant datasets suitable for downstream analyses. Both hard filtering and
machine-learning-based methods (VQSR) are evaluated to optimize accuracy across
different crop datasets.

Population genetic analyses are demonstrated through the estimation of population
structure and kinship matrices, employing approaches such as PCA, ADMIXTURE/sNMF,
and VanRaden’s method. These analyses enable robust control of confounding factors
in genomic studies and the identification of duplicates or closely related accessions
within genebank collections.

A gap analysis framework is presented to assess the representativeness of germplasm
collections with respect to nucleotide diversity. Using the G2P-SOL tomato core
collection as a case study, the analysis quantifies how genetic diversity saturates with
increasing sample size, offering a practical approach for identifying redundancy or
missing diversity within collections.

The deliverable further details a complete pipeline for Genome-Wide Association
Studies (GWAS) and Quantitative Trait Locus (QTL) analyses. These pipelines integrate
advanced statistical models implemented in GAPIT3 (including MLM, FarmCPU, and
BLINK) and standard QTL mapping software (R/qtl, JoinMap). Demonstration activities
using the Capsicum (pepper) G2P-SOL core collection showcase the identification of
genomic regions linked to key agronomic and morphological traits across multiple
environments. Atotal of 207 significant markers associated with 23 traits were identified,
mapped to 112 genomic regions, and prioritized for candidate gene identification.

Overall, D3.5 delivers a harmonized suite of bioinformatic methods, open workflows,
and demonstrative case studies that strengthen Europe’s capacity for genomic
characterization of plant genetic resources.

D3.5 finally points out that due to the high complexity and computational demands of
bioinformatic analyses, it is more effective to centralize these activities within a few
specialized hubs of the GRACE infrastructure. This coordinated model provides the
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necessary expertise, standardized workflows, and computing capacity, ensuring data
quality, reproducibility, and consistency while allowing genebanks to benefit from
advanced analyses without developing local infrastructures.
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SNPs calling

In modern genomics, the accurate interpretation of sequencing datarelies heavily on two
main steps: aligning sequencing reads to a reference genome and identifying genetic
variants through variant calling.

Raw sequencing data (typically in FASTQ format) undergo quality control to remove low-
guality sequences and technical artifacts. Tools such as FastQC"', Trimmomatic?, fastp?®
and Cutadapt* are used to assess base quality, detect adapter contamination, and trim
unwanted sequences.

fexample code for cleaning reads using fastp#
fastp -1 ${READ} 1.fqg.gz -I S{READ} 2.fg.gz -o

${READ} clean 1l.fqg.gz -O ${READ} clean 2.fqg.gz

Subsequently, cleaned reads must be aligned against a reference genome of the
species. To perform an efficient alignment, the genome is pre-processed into an indexed
format. Most aligners rely on either:

e Burrows-Wheeler Transform (BWT): Used in tools like BWA-MEM® and
Bowtie25, this algorithm enables fast and memory-efficient exact and inexact
string matching.

o Hash-based indexing: Employed by older or specialized aligners, using fixed-
length k-mers for quick lookup.

During alignment, each read is compared to the reference genome to find the best
possible match, allowing for mismatches, insertions, deletions, or sequencing errors.
The aligner outputs a SAM (a human-readable, plain-text format)/BAM (the binary,
compressed version of SAM, optimized for storage and computational efficiency) file
that contains alighment positions, mapping quality scores, and other metadata. The BAM
file is subsequently sorted and indexed for downstream analyses.

The most used aligners are:

e BWAS® The most widely used aligner for short-read DNA sequencing (e.g.,
WGS/WES). It provides accurate alignment around indels and handles paired-end
data efficiently.

e BWA-MEM2’ is an improved and faster version of the original BWA-MEM
algorithm. It was developed by the Broad Institute as a drop-in replacement for
BWA-MEM, designed to enhance performance while maintaining identical output.

e BWA-MEME?® (BWA-MEM Enhanced) is a variant of BWA-MEM specifically
designed to improve alignment accuracy around long insertions and deletions
(indels).
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e Bowtie2®: Optimized for speed and memory usage, suitable for small genomes
and high-throughput applications, though less accurate for clinical variant
detection.

e Minimap2°: Designed for long-read sequencing (e.g., PacBio, Oxford Nanopore),
offering fast and accurate mapping for both genomic and transcriptomic reads.

e HISAT2" and STAR'"": Splice-aware aligners primarily used for RNA-seq data to
identify exon-exon junctions accurately.
ffexample code for bwa and short reads#
bwa index SREF

bwa mem -t S${THREADS} ${REF} S{READ} clean 1l.fg.gz

${READ} clean 2.fg.gz | samtools view -@ S{THREADS} -b - |

samtools sort -@ ${THREADS} -o S$S{OUT}.sorted.bam

samtools index ${OUT}.sorted.bam

fexample code for minimap2 and PacBio long reads#

minimap2 -ax map-pb -t ${THREADS} S${REF} S${READS}.fg.gz |
samtools view -@ S${THREADS} -b - | samtools sort -@ ${THREADS}
-0 ${OUT}.sorted.bam -

samtools index ${OUT}.sorted.bam

After alignment, marking PCR duplicates with tools like Picard'? or Sambamba’ is
typically performed to prepare data for variant calling. Marking PCR duplicates is
mandatory for WGS, while for reduced representation sequencing methodologies like
SPET and GBS, it should be avoided.

#fexample code for MarkDuplicates #
GATK MarkDuplicates —--java-options —-Xmx30g -I

S{OUT}.sorted.bam -0 S$S{OUT}.md.bam -M ${OUT}.metrics.txt

Once reads are aligned, the next step is to identify variants in the genome where the
sample differs from the reference. These include single nucleotide polymorphisms
(SNPs), insertions and deletions (indels), and structural variants (SVs).

The main Variant Calling Tools are:
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e GATK HaplotypeCaller'*: Performs local haplotype reassembly to accurately
detect SNPs and indels. It is included in the GATK suite and supports joint
genotyping of multiple samples and is the gold standard in many pipelines.

o« DeepVariant: Adeep learning-based caller developed by Google, known for high
accuracy in both germline and somatic variant calling.

« FreeBayes'®: A Bayesian variant caller suitable for pooled and multisample
datasets. It is robust in detecting complex alleles and indels.

e bcftools’: A lightweight tool built on Samtools for simple variant calling from
pileups, usefulin fast or low-resource settings.

e Strelka2™ and Octopus': High-performance callers that balance speed and
accuracy, particularly strong in detecting somatic variants and low-frequency
alleles.

e Clair3®: A neural network-based caller optimized for long-read sequencing
technologies.

#example code for GATK with multiple samples#
GATK HaplotypeCaller -R ${REF} -I ${OUT}.md.bam -O
S{OUT}.g.vcf.gz -ERC GVCF

GATK HaplotypeCaller -R ${REF} -I ${0OUT2}.md.bam -0
S{OUT2}.g.vcf.gz -ERC GVCF

GATK GenomicsDBImport --genomicsdb-workspace-path my database
-—-sample-name-map sample map.txt --intervals intervals.list --
batch-size 50

GATK GenotypeGVCFs -R ${REF} -V gendb://my database -0
cohort.vcf.gz

#fexample code for DeepVariant with multiple samples
glnexus for merging cohorts of gvcf#

$DEEPVARIANT_BIN ——model_typeZWGS —ref=${REF} -
reads=${0UT}.md.bam --output vcf=5{0UT}.vcf.gz —--
output gvcf=${O0UT}.g.vcf.gz -—-num shards=${THREADS}

$SDEEPVARIANT BIN --model type=WGS -ref=S${REF} -
reads=${0UT2}.md.bam --output vcf=S${0UT2}.vcf.gz --

output gvcf=${0UT2}.g.vcf.gz --num shards=${THREADS}
glnexus cli --config DeepVariantWGS --threads S{THREADS} --
list “GVCF _LIST FILE” > cohort merged.vcf
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Structural Variant Calling

Structural Variants (SVs) are large-scale genomic alterations that involve segments of
DNA typically greater than 50 base pairs in length. They include a variety of genomic
rearrangements such as deletions, duplications, insertions, inversions, and
translocations. Structural variants can significantly impact gene function and regulation
by disrupting coding sequences, altering gene dosage, or modifying regulatory regions.
As aresult, they play a crucial role in diversity, evolution, and disease susceptibility.

Detecting large-scale genomic rearrangements requires specialized tools, including:

e Manta?', Delly2??, Lumpy?, SVABA?*, Dysgu°, Parliament22%: Suitable for short-
read SV detection.

e Sniffles2?, cuteSV?® and SVIM%: Tailored for long-read sequencing data.

These tools leverage discordant read pairs, split reads, and read depth signals to identify
deletions, duplications, inversions, and translocations.

Filters for genotypic data

High-throughput technologies (see D3.2) are used to obtain genetic information, or
genotypes, for each accession. The most common type of genetic variant analyzed isthe
Single Nucleotide Polymorphism (SNP), a location in the genome where a single base
of the DNA sequence varies among individuals. Millions of SNPs distributed across the
entire genome are typically genotyped for each sample.

Genotyping providers typically apply initial Quality Control (QC) procedures that are
specific to the technology used. For Next-Generation Sequencing (NGS), standard
protocols involve removing loci with low sequencing depth (i.e., supported by an
insufficient number of reads) and loci with low PHRED-like quality scores (Q), where Q
indicates the probability of an incorrect base call.

While necessary, these provider-level QC steps are insufficient on their own to prevent
bias and spurious signals in genotype-trait association tests. Consequently, the
investigator must implement a series of additional, more stringent QC measures. These
supplementary procedures include filtering steps that are standard for any diversity,
population structure and GWA analyses, as well as those adapted to the specific
population structure of the study.

Basic filtering for GATK suite
These filters are exclusive of the GATK and must be applied only when using this pipeline
e Base Quality Score Recalibration (BQSR)

With this method, implemented in GATK, systematic errors in sequencer-
produced base quality scores are empirically characterized and corrected to
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enhance variant calling accuracy. The process begins with the BaseRecalibrator
module, which analyzes aligned sequencing reads (e.g., in BAM/CRAM format)
alongside a database of known variant sites. By evaluating covariates such as
read group, reported quality score, cycle (position in read), and sequence context
(dinucleotide), the tool builds an empirical error model that reflects sequencing
biases and machine-specific artifacts. Subsequently, ApplyBQSR uses the
recalibration table generated by BaseRecalibrator to adjust base quality scores
across the dataset, outputting a recalibrated BAM or CRAM file suitable for
downstream analysis. For quality control, the AnalyzeCovariates tool can
produce before-and-after plots to visualize the effects of recalibration and assess
model performance.

BQSR is strongly recommended for workflows where base quality scores may be
systematically biased, common in high-throughput sequencing platforms such as
Ilumina, PacBio, and others. In best-practice pipelines, it is considered an
optional but highly advisable step, as it typically improves variant calling
accuracy, especially in germline sequencing with standard or high coverage.

In the absence of known variant resources, such as experiments involving non-
model organisms, BQSR may still be applied via a bootstrapping strategy,
whereby an initial variant set is generated without BQSR, filtered for high
confidence, andthen used as a provisional known-sites resource for recalibration
in subsequent rounds. Itis noteworthy, however, that in certain contexts, such as
when using variant callers like DeepVariant trained on raw data, or in low-
coverage datasets, the benefits of BQSR may be minimal or context-dependent.

e Variant Quality Score Recalibration (VQSR)

Variant Quality Score Recalibration (VQSR) is a refined, machine-learning-based
method to filter variant calls by learning multi-dimensional annotation profiles
from high confidence known variant sets and differentiating true variants from
artifacts. Rather than applyingrigid, unidimensional thresholds, VQSR constructs
a Gaussian mixture model (GMM) to characterize the distribution of variant
annotations, such as Quality by Depth (QD), Mapping Quality (MQ), Strand Odds
Ratio (SOR), Fisher Strand (FS), ReadPosRankSum, among others, for both “true”
and “false” variant classes. The tool VariantRecalibrator builds this model using
overlapping sites between the callset and well-curated resources (e.g., HapMap,
Omni, 1000 Genomes), and then assigns each variant a VQSLOD score, the log-
odds ratio of being a true variant versus an artifact, based on its annotation profile.
Users can then specify a target sensitivity, for instance aiming to retain 99% of
known true positives, to set cutoffs that balance sensitivity and specificity,
typically visualized via tranche plots. This enables nuanced filtering that captures
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complex annotation interactions, akin to tracing contour lines around mountain-
top clusters in a multi-dimensional annotation space.

VQSR is most effective for large-scale germline variant callsets, where ample
variant data and high-quality training resources enable robust model fitting. It is
the recommended best practice when performing whole-exome or whole-
genome analyses with joint-called samples, as the substantial number of
variants allows the Gaussian mixture model to distinguish true signals from noise
reliably. However, for small datasets, such as single-sample or targeted panels
with few variants, VQSR may fail to converge, and extensive manual tuning (e.g.,
reducing the number of Gaussians with --maxGaussians) might be required,
though often hard-filtering remains the more practical choice. Crucially, VQSR
requires robust, well-validated truth resources; in contexts lacking such
resources, non-model organisms or novel experimental designs, hard-filtering or
bootstrapped methods may still be preferable. When properly applicable, VQSR
delivers a flexible, data-driven filtration framework that elegantly adapts to data
characteristics and delivers maximized accuracy in variant classification.

GATK hard filter

The hard-filtering approach in GATK entails applying fixed numeric thresholds to one or
more variant annotation metrics (e.g., QualByDepth, FisherStrand, StrandOddsRatio,
RMSMappingQuality, MappingQualityRankSum, ReadPosRankSum) and rejecting any
variant that fails to comply with these criteria. This method involves evaluating each
annotation independently, resulting in variants being filtered out if even one metric
exceeds (orfalls below) the preset threshold; this unidimensionalfiltering can potentially
exclude true positive variants or retain false positives to preserve others. GATK provides
tools such as VariantFiltration to implement hard-filtering, which flags variants in the
VCF by populating the FILTER field with appropriate labels instead of deleting them
outright. Typical thresholds recommended by GATK, forinstance, QD < 2.0, FS > 60, SOR
> 3, MQRankSum < -12.5, ReadPosRankSum < -8.0, are often suggested as starting
points, with adjustments made based on visualization of the annotation value
distributions in the specific dataset.

Hard-filtering is particularly valuable when datasets lack sufficient size or high-quality
known variant resources required for machine-learning-based strategies like VQSR
(Variant Quality Score Recalibration). For example, targeted gene panels, exome
subsets, non-model organisms, or small-scale sequencing experiments often yield too
few variantsto train reliable recalibration models, making hard-filtering the only practical
alternative. In these contexts, custom thresholds, possibly informed through simulation
or exploratory analysis, can enhance specificity without sacrificing sensitivity. Studies
have recommended simulating variant datasets to derive optimized cutoffs, particularly
forchallenging variant types such asindels orin low-complexity regions, thereby tailoring
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filtering parameters to the experimental design. While VQSR remains the recommended
best practice for large, well-resourced datasets, hard-filtering serves as a robust fallback
or manual refinement mechanism when VQSR is infeasible or when analyses require
sample-level or cohort-specific customization.

#Hard filter SNPs#

GATK SelectVariants -R S${REF} -V cohort.vcf.gz --select-type-
to-include SNP -O cohort snps.vcf.gz

GATK VariantFiltration -R $S{REF} -V cohort snps.vcf.gz --
filter-expression "QD < 2.0 || QUAL <30 || FS > 60.0 || MO <
40.0 || SOR > 4.0 || MQORankSum < -12.5 || ReadPosRankSum < -
8.0" --filter-name "SNP FILTER" -O cohort snps tmp.vcf.gz

GATK SelectVariants -R S{REF} -V cohort snps tmp.vcf.gz -
exclude-filtered true -0 cohort snps filtered.vcf.gz

#Hard filter Indels#
GATK SelectVariants -R ${REF} -V cohort.vcf.gz —--select-type-
to-include INDEL -O cohort indels.vcf.gz

GATK VariantFiltration -R S{REF} -V cohort indels.vcf.gz
filter-expression "QD < 2.0 || QUAL <30 || FS > 200.0 ||
ReadPosRankSum < -20.0" --filter-name "INDEL FILTER" -0
cohort indels tmp.vcf.gz

GATK SelectVariants -R S{REF} -V cohort indels tmp.vcf.gz
exclude-filtered true -0 cohort indels filtered.vcf.gz

#Merge SNPs and Indels vcf#

GATK GatherVcfsCloud --cloud-prefetch-buffer 0 -I

cohort snps filtered.vcf.gz -I cohort indels filtered.vcft.
O cohort snps indels filtered.tmp.vcf.gz

GATK SortVcf -I cohort snps indels filtered.tmp.vcf.gz -0
cohort snps indels filtered.final.vcf.gz

Population structure/pedigree determination

Understanding the population structure within a germplasm collection is essential to
accurately interpret genetic diversity, assess redundancy, and control for confounding
in downstream analyses such as GWAS or genomic prediction. Population structure
refers to the presence of subgroups within the dataset that share a higher degree of
relatedness due to geographic origin, domestication history, or selective breeding.

Population structure is typically inferred using several complementary approaches:

1. Principal Component Analysis (PCA)
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PCA is a model-free, multivariate approach that summarizes genome-wide
variation into orthogonal components (principal components, PCs). The first few
PCs usually capture the main axes of genetic differentiation (e.g. between
species, ecotypes, or breeding groups). For large genotypic datasets, the R
package SNPRelate® offers an efficient implementation of PCA using the GDS
(Genomic Data Structure) format, optimized for memory and computational
speed.

Example code (R):
library (SNPRelate)

# Convert VCF to GDS format

vcf.fn <- "dataset filtered.vcf.gz"

gds.fn <- "dataset filtered.gds"

snpgdsVCF2GDS (vcf.fn, gds.fn, method="biallelic.only")

# Open GDS file
genofile <- snpgdsOpen (gds.fn)

# Perform LD pruning to reduce redundancy

set.seed (1000)

snpset <- snpgdsLDpruning (genofile, 1ld.threshold=0.2)
snpset.id <- unlist (snpset)

# Run PCA on pruned SNPs
pca <- snpgdsPCA (genofile, snp.id=snpset.id, num.thread=4)

# Extract eigenvectors and variance explained

pc.percent <- pcaSvarprop * 100

tab <- data.frame(sample.id = pcaS$Ssample.id,
EVl = pcaSeigenvect[,1],
EV2 pcaSeigenvect[,2],
EV3 pcaSeigenvect [, 3],
stringsAsFactors = FALSE)

# Plot PCA

plot (tab$EV1, tab$EV2, col="dodgerblue", pch=19,
xlab=pastel ("PC1 (", round(pc.percent([1l],1),
ylab=pastel ("PC2 (", round(pc.percent([2],1),

) ")
)")

%
"%

The resulting eigenvalues and eigenvectors can be visualized using R or Python to detect

clustering patterns, which can then be included as covariates in GWAS to correct for
stratification.
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2. Model-based clustering methods aim to infer the ancestry composition of each
individual by assuming a certain number of ancestral populations (K). Each
individual’s genome is represented as a mixture of contributions from these
populations.

Traditionally, tools such as STRUCTURE®' and ADMIXTURE?®? have been employed for
this purpose. While STRUCTURE uses a Bayesian MCMC framework, ADMIXTURE relies
on a maximume-likelihood approach, providing a faster estimation of ancestry
proportions for large datasets.

In recent years, the sNMF algorithm implemented in the R package LEA®* has become a
preferred alternative for high-throughput genomic data, as it performs sparse non-
negative matrix factorization (NMF) to estimate ancestry coefficients without the
computational burden of MCMC sampling.

library (LEA)
# Convert VCF file to geno format (0, 1, 2 coding)
vcf2geno ("dataset filtered.vcf.gz", "dataset filtered.geno")

# Run sNMF for a range of K values (number of ancestral
populations)

project <- snmf ("dataset filtered.geno", K = 1:8, entropy =
TRUE, repetitions = 3, project = "new")

# Cross-entropy criterion to identify the optimal K
plot (project, cex = 1.2, col = "dodgerblued")

# Choose the best run for the optimal K (e.g., K=4)
best <- which.min (cross.entropy (project, K = 4))
gmatrix <- Q(project, K = 4, run = best)

# Plot ancestry coefficients
barplot (t (gmatrix),

col = rainbow (4),

border = NA,

xlab = "Individuals",

ylab = "Ancestry proportion")

The cross-entropy criterion identifies the optimal number of clusters (K) corresponding
to the minimum entropy value. The resulting Q-matrix summarizes the proportion of
ancestry components for each individual and can be visualized as stacked barplots.

This method provides accuracy comparable to ADMIXTURE but with substantially
reduced runtime, making it particularly suitable for plant population genomics and for
datasets derived from genebank accessions.
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3. Discriminant Analysis of Principal Components (DAPC) Implemented in the R
package adegenet®*, DAPC combines PCA for data reduction and discriminant analysis
to maximize between-group variation. It is particularly effective in plant populations
showing both clonal and sexual reproduction.

4. Phylogenetic and hierarchical clustering Tree-based methods (e.g. neighbor-
joining, UPGMA) are often used to visualize relationships between accessions based on
genetic distances (Nei, ldentity-by-State, or IBS). These trees allow identification of
misclassified accessions or close duplicates within genebank datasets.

Kinship

Kinship estimation quantifies the degree of relatedness between individuals, reflecting
the proportion of alleles shared due to common ancestry. Accurate kinship estimation is
essential to control confounding effects of relatedness in GWAS, genomic prediction,
and pedigree reconstruction.

A kinship matrix (K) represents pairwise genomic relationships and can be computed
using several methods:

e« VanRaden method?®®, implemented in GAPIT*5, TASSEL*, and GEMMA?3é;

P4
2Xpi(1 —py)

where Zis the centered genotype matrix and p;is the allele frequency at locus i.

A wide range of tools are available for estimating kinship or genomic relationship
matrices, each optimized for different data sizes, formats, and analytical purposes:

Tool Method Input Speed Output format |[Typical use
VanRaden, .
GAPIT3 (R) R data.frame Fast R matrix GWAS, GBLUP
EMMA
TASSEL IBS, Centered |[VCF/Hapmap ||Fast .txt/.csv GWAS
GEMMA GRM PLINK .bed Very fast Binary matrix Mixed models
Heritability,
GRM . .
GCTA PLINK .bed Fast .erm.bin genomic
(VanRaden) -
prediction
. Pedigree
KING IBD/IBS PLINK .bed Very fast .kinO table .
inference
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Tool Method Input Speed Output format |[Typical use
. VanRaden, . . Genomic
AGHmatrix (R) . R matrix Fast R object .
Hybrid selection
Additive G . . . BLUP / GBLUP
rrBLUP (R) . Numeric matrix (|Fast R matrix
matrix models

Example PLINK command for IBS-based kinship:
plink2 --bfile INPUT --make-king-table --out kinship

GEMMA - efficient GRM calculation:
gemma -g genotypes.txt -p phenotype.txt -gk 1 -o kinship gemma

GCTA - VanRaden-based GRM:
gcta64 --bfile genotypes --make-grm --out kinship gcta

KING - pedigree and duplicate detection:
king -b genotypes.bed --kinship --prefix kinship king

When explicit pedigree records are unavailable, as often in genebank accessions,
kinship matrices can be used to infer putative parental or sibling relationships. High
pairwise kinship coefficients (>0.45) typically indicate duplicates or clonally propagated
material, whereas values around 0.25 suggest half-sibs or parent-offspring
relationships.

In GWAS and genomic prediction, the kinship matrix is incorporated as a random effect
to account for covariance among individuals. This reduces false positives caused by
cryptic relatedness. In GAPIT3, the kinship matrix can be automatically computed and
included in the mixed linear model (MLM) or compressed MLM (CMLM).

Example in R:
myGAPIT <- GAPIT (

Y = myY,

GD = myGD,

GM = myGM,

PCA.total = 4,
kinship.algorithm = "VanRaden",

model = "MLM"

[16]



PRO-GRACE (101094738)

Finally, heatmaps of kinship matrix allow visual inspection of genetic relatedness
patterns across accessions. Clusters of high relatedness may correspond to specific
breeding lines, geographic groups, or recent selection bottlenecks.

Gap analyses

Genebanks and curated germplasm collections play a crucial role in safeguarding the
genetic richness of crop species. However, the degree to which existing collections
represent the full spectrum of a species’ genetic diversity remains uncertain. To address
this, we developed an empirical framework to quantify the completeness of genetic
collections with respect to nucleotide diversity (1t). This parameter provides a direct,
quantitative measure of average pairwise sequence differences among accessions. Itis
robust to missing data, scalable across genomic regions, and can be readily computed
from standard SNP-level VCF files. As such, 1t represents a practical and biologically
meaningful indicator for assessing genetic diversity completeness.

Demonstration activity: gap analysis in the tomato G2P-SOL core collection

The approach builds upon high-throughput genotyping data derived from whole-genome
sequencing (WGS). Using tomato (Solanum lycopersicum) as a test case, we analyzed
approximately 350 accessions sequenced at high coverage (~20x).

To assess diversity completeness, we generated random subsets of increasing size
(ranging from 20 to 300 accessions) and calculated global nucleotide diversity (1) using
the software Pixy*®. For each sampling size, we computed the mean and standard
deviation of Tt across 20 independent replicates.

Overall, the potential advantages of this approach are:

o Assessment of collection completeness, identifying whether a core set
adequately represents total species diversity.

o Comparison across genebanks, to evaluate the relative comprehensiveness of
their holdings.

o Detection of redundancy or conservation gaps, guiding future acquisition and
curation efforts.

The resulting saturation curve should describe how genetic diversity increases with
sample size. When the curve approaches a plateau, the collection can be considered to
capture most of the species’ nucleotide diversity. The preliminary results (Fig. 1) suggest
i) that the t reaches a plateau at a relatively low number of accessions (60); ii) that the
method needs a finer tuning of markers used (in terms of MAF filter, missing data, SNPs
in coding or non-coding regions, etc.) to be carried out.
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Figure 1. Rarefaction-based assessment of nucleotide diversity (rt) in tomato accessions. Each point represents the
mean nucleotide diversity estimated from multiple random subsamplings of increasing collection size. The curve
illustrates how genetic diversity accumulates with sample size, approaching a plateau that indicates the
completeness of the collection in capturing species-wide variation.

Genome wide association (GWA) study

Genome-Wide Association Study (GWAS) is a powerful, hypothesis-free approach used
to identify associations between specific genetic variants and a particular trait or
phenotype. This method systematically scans the entire genome of a large humber of
individuals to identify genetic markers that are statistically correlated with the trait of
interest. While initially used in human genetics, the principles of GWAS are universally
applicable across diverse species, including plants, animals, and microbes, to
investigate the genetic basis of complex traits.

The heart of a GWAS is the statistical test for association. For each SNP, a test is
performed to determine if there is a statistically significant difference in its allele
frequencies between phenotypic groups. For a binary trait, this might be a chi-squared
test, while for a quantitative trait, linear regression is commonly used. The model tests if
the presence of a particular allele at a given SNP is predictive of the trait value. The
fundamental model can be expressed as:

Phenotype~B-SNP+Covariates+e
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where B represents the effect size of the SNP and the model often includes covariates to
control for confounding factors.

Correction for Confounding Factors: To avoid spurious associations, GWAS must
account for population structure and cryptic relatedness. Population structure refers
to systematic differences in allele frequencies between subpopulations, which can
correlate with both genotype and phenotype, leading to false positives. Statistical
methods, such as principal component analysis (PCA), are employed to correct these
effects.

Significance Thresholds and Visualization: Since a GWAS involves performing millions
of simultaneous statistical tests, a stringent significance threshold is required to correct
for multiple testing. The standard threshold is typically set at p-value < 5x10-8, known
as the genome-wide significance level. The results are commonly visualized using a
Manhattan plot, which displays the negative logarithm of the p-value for each SNP
across each chromosome. Significant associations appear as "skyscrapers" that rise
above the significance threshold.

Several tools are currently available for Genome-Wide Association Analysis:

PLINK*®: A high-performance toolkit enabling efficient management of large-scale
genotypic datasets. It provides modules for stringent quality control, univariate
association tests, population structure correction, and basic visualization. Its
robustness and scalability make it a baseline tool for GWA workflows.

TASSEL®": Initially developed with a focus on plant genetics, TASSEL incorporates both
single-locus and mixed-model association approaches. It allows the integration of
genotypic, phenotypic, and environmental covariates, which is particularly valuable for
agrigenomics and multi-environment trials.

GEMMA3®: A software package implementing linear mixed models (LMMs) for both
univariate and multivariate association analyses. GEMMA is optimized for variance
component estimation, thereby efficiently accounting for relatedness and population
stratification.

EMMAX#: A computationally efficient implementation of variance component models
that leverages restricted maximum likelihood (REML) estimation. Its design allows for
rapid analyses in very large datasets without compromising model accuracy.

Of particular relevance is GAPIT3 (Genome Association and Prediction Integrated Tool,
version 3)%%, an R package providing a comprehensive and integrative framework for both
association mapping and genomic prediction. GAPIT3 extends traditional models by
incorporating state-of-the-art multi-locus and multi-trait approaches, thereby
addressing the limitations of single-locus methods in terms of statistical power and false
discovery control. Specifically, GAPIT3 integrates:
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e General Linear Model (GLM) and Mixed Linear Model (MLM) as basic
approaches.

e Compressed Mixed Linear Model (CMLM) and Enriched CMLM (ECMLM) to
improve computational efficiency and statistical power in high-dimensional data.

e FarmCPU“ (Fixed and random model Circulating Probability Unification), a multi-
locus algorithm that iteratively incorporates significant markers as covariates,
reducing confounding and enhancing detection power.

e BLINK* (Bayesian-information and Linkage-disequilibrium Iteratively Nested
Keyway), a high-performance multi-locus model that leverages Bayesian
information criteria and LD pruning for superior speed and precision in locus
detection.

The combination of these models within GAPIT3 provides a flexible and extensible
analytical environment, enabling researchers to tailor the methodological framework to
the genetic architecture of the traits under study and to the specific characteristics of
their datasets. Consequently, GAPIT3 has become a reference platform for advanced
GWA studies across plant, animal and human genetics.

Additional filters on genotypic data for GWA

Prior to conducting a genome-wide association analysis, it is essential to apply stringent
quality control filters to SNPs and SVs to minimize the risk of spurious associations and
ensure robust statistical inference. Standard filters typically include the removal of
multiallelic variants, as well as those with a low call rate (e.g., <20%; take into account
your sequencing depth, since low sequencing depth requires a higher call rate filter),
which mayindicate poor genotyping quality, and exclusion of variants with a minor allele
frequency (MAF) below a chosen threshold (commonly 0.01 or 0.05), as rare variants
often lack sufficient power in GWAS. Furthermore, markers that deviate significantly
from Hardy-Weinberg equilibrium (HWE) in the population (e.g., p < 1e-6) could be
excluded, since such deviations may suggest genotyping errors or population
stratification. However, numerous other factors can lead to deviations from HWE,
particularly because its assumptions are rarely fulfilled in natural populations*. As a
result, excluding loci that deviate from HWE can significantly influence population
genetic inferences. Marked deviations from HWE heterozygosity expectations may also
result from repetitive genomic elements*. Additional factors frequently responsible for
departures from HWE in natural populations include overlapping generations, non-
panmictic mating, deviations from diploidy, and very small effective population sizes.
Moreover, genotype and single nucleotide polymorphism (SNP) calling methods can
further contribute to such departures: genotype inference is often influenced by
sequencing depth and by the mismatch thresholds used to call variants, both of which
may reduce observed heterozygosity and consequently lead to deviations from HWE?¢.

[20]



PRO-GRACE (101094738)

Generally, removing markers according to HWE deviation can be donein open pollinating
crops, although in crops the HWE assumption of random mating is not respected in
presence of stratification (i.e. structure). Furthermore, loci under selection are not in
HWE, so you might remove them for GWAS. This leads to be careful with this filter. A
possible solution is then to remove SNPs showing an excess of heterozygosity. It is very
important to apply this filter based on the level of expected heterozygosity in the species
you are working with.

Another critical aspect of variant-level quality control prior to GWAS concerns the depth
of sequencing (DP). Variants with extremely low coverage are prone to high genotype
uncertainty and elevated error rates, while those with excessively high coverage may
reflect mapping artifacts or repetitive regions. To mitigate these issues, SNPs are
typically filtered by enforcing minimum and maximum depth thresholds (e.g.,
excluding genotypes with DP <10 to avoid false heterozygotes, and removing variants
with mean DP exceeding 2/3 times the cohort average, which may indicate alignment
artifacts).

Depth-based filtering can be performed both at the per-genotype level (removing low-
confidence genotype calls within individuals) and at the per-variant level (excluding
SNPs systematically under- or over-covered across samples). This ensures that retained
variants are supported by sufficient, but not inflated, read evidence, thereby improving
downstream genotype accuracy and association testing power.

In addition to SNP-level filtering, rigorous sample-level quality control is required to
ensure the integrity of the dataset prior to genome-wide association studies. Acommon
first step is the exclusion of individuals with an excessive missing genotype rate (e.g.,
>5%), which may indicate poor DNA quality or technical artifacts. Further,
heterozygosity outliers are excluded, as elevated or reduced genome-wide
heterozygosity may signal contamination, inbreeding, or technical errors.

Finally, since GWAS cannot deal with missing values, missing marker values need to be
imputed before we can regress phenotypes on genotypes. Various options are available,
including the mean imputation or using Beagle* (based on Hidden Markov Model
(HMM)). The former replaces missing marker calls by the mean value of the marker
across the population. It is the fastest and simplest way to impute missing markers. An
adequate method if the fraction of missing markers is very low and the marker density is
high (i.e., genomic regions are represented by many markers).

Beagle uses a localized haplotype clustering imputation algorithm. It makes use of a
Hidden Markov Model (HMM) to find the most likely haplotype pair given the genotype
data for thatindividual and the haplotype frequency in the population. Beagle is relatively
user-friendly, accurate under default settings, well-supported, and widely used. It takes
a vcf (also compressed).
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#example code for additional filters on SNPs and indels vcf
for GWA purpose#

#left align variants and remove SNPs near indels

bcftools norm -f “genome.fa” -O z -o OUTPUT norm.vcf.gz —--
threads 50 INPUT.vcf.gz

bcftools view OUTPUT norm.vcf.gz | bcftools filter -e 'AC==
| | AC==AN' --SnpGap 5 -O z -o OUTPUT norm no 5bpSNPS.vcf.gz --
threads 50

# keep only biallelic SNPs and remove indels

bcftools view -O z -o OUTPUT norm no 5bpSNPS biallelic.vcf.gz
-¢c 1 -m2 -M2 --types snps —--threads 50

OUTPUT norm no_ SbpSNPS.vcf.gz

#fcalculate depth of coverage on a per-basis level

vcftools --gzvcf OUTPUT norm no 5bpSNPS biallelic.vcf.gz --
site-mean-depth --out mean depth

#In R plot and get statistics of the depth at each site
library(tidyverse)
var depth <- read delim("mean depth.ldepth.mean", delim =
"\t", col names = c("chr", "pos", "mean depth", "var depth"),
skip = 1)
summary (var depthSmean depth)
png (filename="DP.png", width =300, height=300, units="mm", res
= 300)
ggplot (var depth, aes(mean depth)) + geom density (fill =
"dodgerbluel", colour = "black", alpha = 0.3)+

theme light()+ x1im (0, 50)
+geom vline (xintercept=mean (var depthSmean depth),color="red")
dev.off ()

#Filter based on the depth of coverage and also based GQ
parameter

bcftools filter -e 'MEAN (FMT/DP)<12'

OUTPUT norm no 5bpSNPS biallelic.vcf.gz | bcftools filter -e
'MEAN (FMT/DP) >30' | bcftools filter -S . -e 'FMT/GQ<20' [
bcftools filter -e '"AC== | | AC==AN' -0 z -0

OUTPUT norm no 5bpSNPS biallelic DP12 30 GQ.vcf.gz
#calculate missingness at SNP level

plink2 --vcf
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OUTPUT norm no 5bpSNPS biallelic DP12 30 GQ.vcf.gz --allow-

extra-chr —missing

#In R plot and get statistics of the missing data at SNP level
snpmiss<-read.table(file="plink2.vmiss",

header=TRUE, comment.char = "") ####This fle contains missing at
SNP level, to USE

summary (snpmissSEF MISS)

png (filename="missing.png", width =300, height=300,
units="mm", res = 300)

ggplot (snpmiss, aes(F MISS)) + geom density(fill =
"dodgerbluel", colour = "black", alpha = 0.3)+x1im(0,0.3)
dev.off ()

#filter at 5% of missing data at SNP level

bcftools filter

OUTPUT norm no 5bpSNPS biallelic DP12 30 GQ.vcf.gz -e

'"N MISSING>11' --threads 40 | bcftools filter -e 'AC==0 ||
AC==AN' -0 z —--threads 50 -o

OUTPUT norm no 5bpSNPS biallelic DP12 30 GQ MISSINGS.vcf.gz

#filter accessions with high percentage of missing data

plink2 -—--vcf
OUTPUT norm no S5bpSNPS biallelic DP12 30 GQ MISSING5.vcf.gz --
allow-extra-chr --missing

#In R plot and get statistics of the missing data at
individual level

library(tidyverse)
indmiss<-read.table(file="plink2.smiss",

header=TRUE, comment.char = "")

ggplot (indmiss, aes(F MISS)) + geom density(fill =
"dodgerbluel", colour = "black", alpha = 0.3)+x1im(0,0.6)

#As an example, keep accessions with no more than 20% of
missing data

plink2 --vcf

OUTPUT norm no S5bpSNPS biallelic DP12 30 GQ MISSINGS5.vcf.gz --

allow—-extra-chr --set-missing-var-ids @:# --mind 0.2 --make-
bed --out

OUTPUT norm no S5bpSNPS biallelic DP12 30 GQ MISSINGS missing 1
nd20
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#Filter out markers with a MAF < 0.05, exclude chromosome 0

(not very useful for GWA) and save output as plink bed file
plink2 --bfile

OUTPUT norm no 5bpSNPS biallelic DP12 30 GQ MISSINGS --allow-
extra-chr --not-chr 0 -maf 0.05 -make-bed --out

OUTPUT norm no 5bpSNPS biallelic DP12 30 GQ MISSINGS missing i

nd20 MAF5

#Filter highly heterozygous SNPs based on mean heterozygosity
plink2 --bfile

OUTPUT norm no 5bpSNPS biallelic DP12 30 GQ MISSINGS missing i
nd20 MAF5 --geno-counts

In R plot and get statistics of the heterozygosity per site
het site <- read.table("plink2.gcount", head=TRUE, sep="\t",
comment.char = "")

het site$HET RATE =

het site$"HET REF ALT CTS"/ (het site$"HOM REF CT" +

het site$"TWO ALT GENO CTS"+het site$"HET REF ALT CTS")
ggplot (het site, aes (HET RATE))+geom density()+theme bw ()
mean (het siteSHET RATE)

sd (het siteSHET RATE)

#####get sites with a heterozygosity higher than the mean plus
2 SD

het fail site = subset (het site, (het siteSHET RATE >

mean (het siteSHET RATE)+2*sd(het siteSHET RATE)));
write.table (het fail site, "fail-het site-gc.txt",
row.names=FALSE)

# In bash:

sed 's/"// g' fail-het site-gc.txt | awk '{print$l, $2}'>

het fail site.txt

plink2 -bfile

OUTPUT norm no 5bpSNPS biallelic DP12 30 GQ MISSINGS missing i
nd20 MAF5 --allow-extra-chr --exclude het fail site.txt --
make-bed --out

OUTPUT norm no 5bpSNPS biallelic DP12 30 GQ MISSINGS missing i
nd20 MAF5 het site

#check the heterozygosity of your accessions. Keep in mind the
species you are working with. Calculate heterozygosity per
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individual by pruning SNPs matrix. Better to use independent
SNPs

plink2 -bfile

OUTPUT norm no 5bpSNPS biallelic DP12 30 GQ MISSINGS missing i
nd20 MAF5 het site --allow-extra-chr --indep-pairwise 50 5
0.1

#fextract pruned SNPs and calculate heterozygosity on

individual bases

plink2 -bfile

OUTPUT norm no 5bpSNPS biallelic DP12 30 GQ MISSINGS missing i
nd20 MAF5 --extract plinkZ.prune.in --het --make-bed --out
OUTPUT norm no 5bpSNPS biallelic DP12 30 GQ MISSINGS missing i
nd20 MAF5 pruned

In R, plot and get statistics of the heterozygosity per
individual

het -<

read.table ("OUTPUT norm no 5bpSNPS biallelic DP12 30 GQ MISSIN
G5 missing ind20 MAF5 pruned.het", head=TRUE, comment.char =""
)

hetSHET RATE = (het$"OBS CT" - het$"O.HOM.")/het$"OB57CT"
ggplot (het, aes (HET RATE))+geom density ()+theme bw ()
mean(het$HET_RATE)

sd (hetSHET RATE)

Remove individuals having, as example a mean + 3 SD het
(contamination?) and -3SD (inbreeding?)
het fail = subset(het, (het$SHET RATE < mean (het$HET RATE) -

B*Sd(het$HET_RATE)) | (het$HET_RATE >
mean (het SHET RATE) +3*sd (het$HET RATE)));
het_fail$HET7DST = (het_fail$HET7RATE—

mean (het SHET RATE) ) /sd(hetSHET RATE) ##add deviation from the
mean
write.table (het fail, "fail-het-gc.txt", row.names=FALSE)

#In bash:

sed 's/"// g' fail-het-gc.txt | awk '{print$1l, $2}'>
het fail ind.txt

plink2 --bfile

OUTPUT norm no 5bpSNPS biallelic DP12 30 GQ MISSINGS missing i
nd20 MAF5 --remove het fail ind.txt --make-bed --out
OUTPUT norm no 5bpSNPS biallelic DP12 30 GQ MISSINGS missing i
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nd20 MAF5 NO het ind
# Save as vcf al well
plink2 -bfile

OUTPUT norm no 5bpSNPS biallelic DP12 30 GQ MISSINGS missing i
nd20 MAF5 NO het ind --allow-extra-chr --export vcf bgz --out
VCF for LD

An important step is to calculate linkage disequilibrium (LD) decay. It shows the
relationship between R? or Dprime on the y-axis and the distance between marker pairs
on the x-axis to understand the pattern of LD, which will be used later for QTL
identification. One can wuse PoplLDdecay in bash (https://github.com/BGI-

shenzhen/PoplLDdecay) with a -MaxDist: 1 million bp.

GWA analysis using GAPIT3

Molecular markers

#SNPs Imputation with Beagle

plink2 --bfile

OUTPUT norm no 5bpSNPS biallelic DP12 30 GQ MISSINGS missing i
nd20 MAF5 NO het ind --allow-extra-chr --export vcf bgz --out
OUTPUT norm no 5bpSNPS biallelic DP12 30 GQ MISSINGS missing i
nd20 MAF5 NO het ind BEAGLE

#Imputation

Java -jar —-Xmx30G beagle gt=

OUTPUT norm no 5bpSNPS biallelic DP12 30 GQ MISSINGS missing i
nd20 MAF5 NO het ind BEAGLE.vcf.gz out=

OUTPUT norm no 5bpSNPS biallelic DP12 30 GQ MISSINGS missing i
nd20 MAF5 NO het ind IMPUTED

# Filter again for maf after imputation and save as

plink2 --vcf

OUTPUT norm no S5bpSNPS biallelic DP12 30 GQ MISSINGS missing i
nd20 MAF5 NO het ind IMPUTED.vcf.gz --allow-extra-chr --
export vcf bgz --maf 0.05 --out

OUTPUT norm no S5bpSNPS biallelic DP12 30 GQ MISSINGS missing i
nd20 MAF5 NO het ind IMPUTED MAF

# Write out in dosage format, i.e. 012 and setup files for
GAPIT

plink2 --vcf

OUTPUT norm no 5bpSNPS biallelic DP12 30 GQ MISSINGS missing i
nd20 MAF5 NO het ind IMPUTED MAF.vcf.gz --export A --out
OUTPUT norm no 5bpSNPS biallelic DP12 30 GQ MISSINGS missing i
nd20 MAF5 NO het ind IMPUTED MAF
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# Write out in bed format

plink2 --vcf
OUTPUT norm no 5bpSNPS biallelic DP12 30 GQ MISSINGS missing i

nd20 MAF5 NO het ind IMPUTED MAF.vcf.gz --make-bed --out
OUTPUT norm no 5bpSNPS biallelic DP12 30 GQ MISSINGS missing i
nd20 MAF5 NO het ind IMPUTED MAF

#In R read in genotype file which we imputed before using
Beagle in numeric format####

test=fread ("OUTPUT norm no 5bpSNPS biallelic DP12 30 GQ MISSIN
G5 missing ind20 MAF5 NO het ind IMPUTED MAF.raw", head=T)
testl=test([, -c(l,3:6)] #remove unwanted columns

fwrite (testl, file="

OUTPUT norm no S5bpSNPS biallelic DP12 30 GQ MISSINGS missing 1
nd20 MAF5 NO het ind IMPUTED MAF.raw", quote=FALSE, sep="\t",
nThread = 8, dec=".")

###Prepare SNP information for GAPIT with ID SNPs
myGD=read.table ("OUTPUT norm no 5bpSNPS biallelic DP12 30 GQ M
ISSINGS missing ind20 MAF5 NO het ind IMPUTED MAF.bim")

myGD final=myGD%$>%select (V2,V1,V4) %>%rename (Name=V2,Chromosome
=V1, Position=V4 )

write.table (myGD final, file="

OUTPUT norm no SbpSNPS biallelic DP12 30 GQ MISSINGS missing 1
nd20 MAF5 NO het ind IMPUTED MAF snp information",

sep="\t", row.names = F, quote=F)

Phenotypic data Processing for GWA

The reliability and interpretability of Genome-Wide Association (GWA) results strongly
depend on the quality and statistical properties of the phenotypic data used as input. In
plant genetics, phenotypic datasets are often derived from multi-environment trials,
replicated experimental designs, and high-throughput phenotyping platforms. This
complexity requires careful data preprocessing and standardization before association
analysis.

Phenotypic data must first undergo rigorous quality control procedures. Outlier
detection is performed to identify measurements that deviate markedly from the
distribution of the trait within a given environment or replicate, which may result from
measurement errors, environmental stress events, or recording inconsistencies.
Outliers can be removed or, when appropriate, replaced using best linear unbiased
estimates (BLUES) or predictors (BLUPs) derived from mixed models.

Many GWA methods assume that phenotypic values approximate a normal distribution.
Traits exhibiting skewness, kurtosis, or bounded distributions (e.g., percentage traits,
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counts, or scores) may violate this assumption. In such cases, statistical
transformations (e.g., logarithmic, square-root, Box-Cox, or rank-based inverse normal
transformation) are applied to improve normality and stabilize variance. The choice of
transformation depends on the underlying biological meaning of the trait and must
preserve interpretability of results.

Plant phenotypes are typically collected across multiple blocks, environments, and
years. To account for these sources of variation, linear mixed models are used to
partition phenotypic variance into genetic and environmental components. This
adjustment improves trait heritability estimates and reduces noise from uncontrolled
environmental heterogeneity. The resulting BLUEs or BLUPs provide standardized trait
values that can be directly used in downstream GWA analyses.

#R code for normalization and BLUPs for a single trait with
multiple environments using inti and BestNormalize4® packages
feno=read.delim(file = "Pheno 3 ENVs outliers.txt", header=T)
fenoSreps<-as.factor (fenoSreps)

fenoSEnv<-as.factor (feno$SEnv)

feno ENV=feno %>% mutate at(c(2), as.numeric)
feno_ENV$names<—rownames(feno_ENV)

ggplot (feno ENV, aes (x=Trait4,color=Env)) +
geom density () +theme bw()

ggplot (feno ENV, aes(y=Trait4,color=Env)) +
geom boxplot () +theme bw ()

#Check and remove outliers

rmout <- outliers remove (data = feno ENV, trait ="Trait4" ,
model = "1 + (l|reps:Env) + (1]|ID)+(1l|Env) + (L] ID:Env) ™)
rmoutSoutliers

outlier 4=rmoutSoutliers

outlier 4Snames <- rownames (outlier 4)

feno4 no outliers=feno ENV%>%anti join (outlier 4,
by="names") #remove outliers based on rownames
#Normalization after outliers removal

(BNobject <- bestNormalize (feno4 no outliers$Trait4))
orderNorm <- orderNorm(feno4 no outliersS$Trait4)
orderNorm

p <- predict (orderNorm)

X2 <- predict (orderNorm, newdata = p, inverse = TRUE)
pdf=data.frame (p)

pdf renamed=rename (pdf, trait4 norma =p)

feno4 no outliers norma <- cbind(feno4 no outliers,
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pdf renamed)

hr <- H2cal (data = feno4 no outliers norma, trait =

"trait4 norma", gen.name = "ID", rep.n = 3,env.n=3,env.name =
"Env", fixed.model = "0 + (l]|reps) + ID+(1l|Env) (L ID:Env)"
, random.model = "1 + (L|ID)+ (1|Env/reps) + (L]ID:Env)" ,
emmeans = F, plot diag = TRUE , outliers.rm = FALSE)

hrSmodel %>% summary ()

hrStabsmr

BLUPs=hr$BLUPs

write.table (BLUPs, file="Trait4 MET.txt", row.names = F,
quote=F, sep="\t")

GWA with GAPIT3 and Blink

To mitigate confounding due to population structure or cryptic relatedness, individuals
with unexpected kinship coefficients (e.g., duplicate or closely related samples) are
identified and pruned, typically using identity-by-descent (IBD) analysis. Additionally,
principal component analysis (PCA) is routinely applied to detect population outliers
that deviate substantially from the main study cohort, as these may inflate false-positive
associations if left unaddressed.

GAPIT3 calculates both kinship matrix and PCA according to the model used. For a
detailed description of the procedures see “Kinship/population structure” section. As a
rule of thumb, one can prepare a PCA on SNPs data and check the appropriate numbers
of components to use in the GAPIT analysis.

#R code for GWA analysis using the raw SNPs matrix previously
obtained as well as the BLUPs for a trait measured in multiple
environments

# Read in genotype file which we imputed before using Beagle
in numeric format

test=fread ("OUTPUT norm no 5bpSNPS biallelic DP12 30 GQ MISSIN
G5 missing ind20 MAF5 NO het ind IMPUTED MAF.raw", head=T)
testl=test([, -c(1,3:6)] #remove unwanted columns

fwrite (testl, file="

OUTPUT norm no_ 5bpSNPS biallelic DP12 30 GQ MISSINGS5 missing i
nd20 MAF5 NO het ind IMPUTED MAF OK.raw", quote=FALSE,
sep="\t", nThread = 8, dec=".")

###Prepare SNP information for GAPIT with ID SNPs
myGD=read.table ("OUTPUT norm no 5bpSNPS biallelic DP12 30 GQ M
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ISSINGS missing ind20 MAF5 NO het ind IMPUTED MAF OK.bim")
myGD final=myGD$>%select (V2,V1,V4) $>%rename (Name=V2, Chromosome
=V1, Position=V4 )

write.table (myGD final, file="

OUTPUT norm no 5bpSNPS biallelic DP12 30 GQ MISSINGS missing i
nd20 MAF5 NO het ind IMPUTED MAF OK snp information",

sep="\t", row.names = F, quote=F)
myY=read.delim("Trait4 MET.txt", head=T)
myGD <-

fread ("OUTPUT norm no S5bpSNPS biallelic DP12 30 GQ MISSINGS mi
ssing ind20 MAF5 NO het ind IMPUTED MAF OK.raw", head = T)
myGM<—

read.table ("OUTPUT norm no 5bpSNPS biallelic DP12 30 GQ MISSIN
G5 missing ind20 MAF5 NO het ind IMPUTED MAF OK snp informatio
n", head=T)

#myGMSChromosome<-as.numeric (myGM$Chromosome)

#Running GAPIT3 with Blink with 0 PCA components as covariates
myGAPIT <- GAPIT( Y=myY, GD=myGD, GM=myGM,

SNP.fraction=0.2, SNP.test = T, PCA.total=0, PCA.3d=FALSE,
Inter.Plot=TRUE, Multiple analysis=FALSE, model=c ("Blink")
, file.output = TRUE)

Statistical Procedures for Determining Significance in GWA

Genome-wide association (GWA) studies typically test a very large number of genetic
markers (from several hundred thousand to millions) for association with phenotypic
traits. This massive multiple-testing burden makes it essential to apply appropriate
statistical procedures to distinguish true associations from spurious results. Several
complementary approaches are employed to determine statistical significance, each
with advantages and limitations.

1. Bonferroni and Sidak Corrections (Family-wise Error Rate Control)

The Bonferroni*® method sets the genome-wide significance threshold by dividing the
nominal a (e.g. 0.05) by the number of independent tests.

¢ Example: with 1,000,000 SNPs, the Bonferroni threshold is p < 0.05/ 1,000,000 =
5x10"-8.

e This threshold has become a de facto standard in human GWAS, corresponding
approximately to the number of independent common variants in European
populations.
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e The Sidak®® correction (a_i=1- (1 - a)*(1/m))is slightly less conservative, but both
assume independence among tests, which is not fully satisfied due to linkage
disequilibrium (LD).

2. False Discovery Rate (FDR) Control

The False Discovery Rate (FDR) approach, most commonly via the Benjamini-Hochberg
procedure®’, controls the expected proportion of false positives among the declared
significant associations.

e Example: setting FDR g = 0.05 means that, on average, 5% of the reported
significant SNPs are expected to be false positives.

e This approach is more powerful than Bonferroni, particularly for traits controlled
by many loci with small effects, as often observed in plants.

¢ FDRthresholds are data-dependent: forinstance, in a maize GWAS with ~500,000
SNPs, the cut-off may fall around p < 10*-5 depending on the observed
distribution of test statistics.

3. Permutation-Based Thresholds

Permutation testing provides empirical thresholds by randomly permuting phenotypes
relative to genotypes, recalculating test statistics, and estimating the null distribution®2.

¢ Example: in a plant GWAS with 100,000 SNPs and 1,000 permutations, the 5%
empirical genome-wide significance threshold might correspond to the minimum
p-value observed across permutations, often lying around p=10*-5ratherthan
the much more stringent Bonferroni threshold of 5 x 10*-7.

e This method accounts for marker correlation due to LD and can be less
conservative than Bonferroni, but it is computationally intensive.

4. Effective Number of Independent Tests

Because of LD, the number ofindependent tests is smaller than the raw number of SNPs.
Estimating the effective number of tests (M_eff) provides a less stringent, but still
rigorous, threshold.

¢ Example: in rice GWAS with 400,000 SNPs, the effective number of independent
markers may be ~100,000. The Bonferroni-adjusted threshold would then be 0.05
/ 100,000 = 5 x 10*-7, less conservative than the naive 0.05 / 400,000 = 1.25 %
10"-7.

5. Hybrid and Weighted Procedures

More advanced procedures integrate prior knowledge (e.g. genomic annotation, minor
allele frequency, functional relevance) to adaptively weight tests.
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Example: SNPs in coding or regulatory regions may be given higher weight,
leading to a less stringent threshold (e.g. p < 10*-6) for these variants compared
to intergenic SNPs.

Such methods can substantially increase the power to detect biologically
relevant loci while controlling type | error rates.

6. g-value approach for FDR control in GWA

The g-value procedure®® provides an extension of the False Discovery Rate (FDR)
framework. While the Benjamini-Hochberg®' (BH) method controls FDR at a predefined
threshold g (e.g. 0.05), the g-value method estimates, for each test, the minimum FDR at

which the test may be called significant.

Interpretation: the g-value of a SNP can be interpreted as the expected
proportion of false positives among all associations at least as significant as that
SNP.

Practical use: instead of reporting a fixed cut-off (e.g. p <1 x 10"-5), researchers
can report all SNPs with g-value < 0.05, ensuring that, on average, no more than
5% of these associations are false discoveries.

Advantages:
o Provides SNP-specific FDR estimates rather than a single global threshold.
o More powerful than conservative FWER methods (Bonferroni, Sidak).

o Particularly suitable for polygenic traits in plants, where numerous
small-effect loci may be detected.

Limitations:

o Requires accurate estimation of the proportion of true null hypotheses
(0), which may be challenging in some datasets.

o Results can be influenced by p-value distributional properties, especially
in structured populations or under strong LD.

#R code for threshold determination using gapit output
results t4=fread(file =

"GAPIT.Blink.trait4 norma.GWAS.Results.csv", header=T,
sep=",")

####Bonferroni#####

number comparison=nrow (results t1l)

bonferroni threshold=0.05/number comparison
bonferroni threshold LOG=-10gl0 (bonferroni threshold)
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results t4 bonferroni<-

results t4%>$filter (P.value<=bonferroni threshold)
###gvalue

p_2 <- results t4SP.value

alpha <- 0.05

gobj <- gvalue(p 2, fdr.level = alpha)

summary (gobj) ####see how many significant at p 0.05
gobj$significant

# find the significant pvalues at FDR level equal to alpha
sp <- sort (gobjSpvalues)

numbs <- sum(gobj$significant)

s <- sp[numbs]

ns <- sp[numbs+1]

thr nolog <- mean(c(s,ns))

thr <- mean(c(-1ogl0O(s),-1o0gl0(ns)))

results t4 FDR<-results t4%>%filter(P.value<=thr nolog)

Demonstration activity: GWA in the pepper G2P-SOL core collection
Core collection resequencing and SNP calling

The G2P-SOL core collection of Capsicum spp., consisting of 423 accessions
representing the genetic variability of a panel of 10,083 accessions, contains 393 C.
annuum accessions and 32 accessions from other cultivated species; these include 16
C. chinense, 4 C. frutescens, 7 C. baccatum, 1 C. chacoense, 1 C. praetermissum, and
one unclassified accession. This collection underwent resequencing using the MGI
platform at 20X coverage depth. Subsequently, the raw reads obtained from the
sequencing step were aligned to the C. annuum cultivar Zhangshugang® pepper
reference genome using the BWA-MEM tool®. Following this, SNP and smallindel calling
was conducted using GATK", yielding more than 300 million unfiltered variants. The raw
variants were then filtered in accordance with the GATK Best Practices pipeline and
bcftools, harvesting 31.328.757 high quality SNPs™ "7,

Analysis of the post-filtering marker set revealed a mean minor allele frequency (MAF) of
20,7% and an average density of 10,36 markers/Kb. At the marker level, the dataset
exhibited 2% missing data and a 2,1% rate of heterozygosity, the accessions displayed
on average 2% missing data and a heterozygosity rate of 7,5%.

Field trials and phenotyping

Six independent field trials were conducted across different years and locations. One
trial was performed by ARO in Israel (2020), one by BATEM in Tlrkiye (2020-2021), one by
CREA in Italy (2019), and two by INRAE in France (2019-2020). WorldVeg conducted an
additional trial in Taiwan (2020-2021). Seedlings were transplanted 5-7 weeks after
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sowing in a randomized complete block design with two to three blocks and two to four
plants per accession per block. Across trials, 23 agronomic traits based on pepper
descriptors from the International Plant Genetic Resources Institute (IPGRI) were
assessed. Of the 18 quantitative traits, 15 were recorded as continuous variables (e.g.,
axis length, Brix, fruit dimensions, plant height, pericarp thickness, total fruit weight) and
three as discrete (flowering time, locule number, total fruit number). Among the five
qualitative traits, three were ordinal (fruit fasciation, fruit load, immature fruit color) and
two were binary (fruit pungency, predominant oblate fruit shape). The resulting field-trial
data were then used to estimate best linear unbiased predictors (BLUPs), which served
as input for the GWAS, using the R package inti®.

C. annuum accessions and markers selected for GWAS

The initial core collection, encompassing 423 accessions representative of the
Capsicum genus, underwent a series of refinement steps. First, the collection was
narrowed to 393 accessions specifically belonging to C. annuum. Subsequently,
accessions exhibiting excessive heterozygosity, defined as those deviating by more than
two standard deviations from the mean individual heterozygosity, were excluded. Further
filtration removed accessions with over 20% missing markers. Additionally, accessions
displaying multiple phenotypes in field trials or lacking phenotypic data were eliminated.
This comprehensive selection process yielded a final set of 362 accessions, which will
serve as the foundation for genome-wide association studies (GWAS).

The final marker set composed of 17.404.615 SNPs, exhibited a mean density of 5,75
markers per Kb, but not homogeneously distributed across the different chromosomes
(Fig. 2); with an average minor allele frequency (MAF) of 21%. Heterozygosity rates were
observed at 1.36%, while missing data at the marker level accounted for 1.3%, the
accessions displayed on average 1.3% missing data and a heterozygosity rate of 3.4%.
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Figure 2 Marker density along the 12 chromosomes. The 12 pepper chromosomes are depicted as vertical bars. In
each chromosome, the horizontal bars represent the gene density, while the red lines represent the SNP density.
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Genome-wide association studies (GWAS) were performed on both single-environment
and multi-environment BLUPs using the R package Genomic Association and Prediction
Integrated Tool (GAPIT, Version 3)%*. The BLINK model*® was applied to each trait, and
results were corrected for relatedness using a kinship matrix calculated with the
VanRaden formula, as well as for population structure by including the first four principal
components estimated by GAPIT3. Circular Manhattan plots were generated with
CMplot®, applying a Bonferroni threshold to control the false discovery rate (Fig. 3).
Quantitative trait nucleotides (QTNs) detected across up to six environments were then
merged, considering the previously estimated linkage disequilibrium (LD) decay for each
chromosome (0.3-0.4 Mb).
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Figure 3 Examples of highly robust QTLs identified in this study: (A) FLe (fruit length), with robust QTLs on chromosomes
2, 8, and 10; (B) FShO (fruit predominant shape oblate), with robust QTLs on chromosomes 9 and 10; and (C) IFCG
(external immature fruit color green), with a robust QTL on chromosome 1. In the circular Manhattan plots, each
concentric ring represents a different environment, and in every ring the red line indicates the Bonferroni threshold.

From the GWAS of the 23 traits, 207 significant markers were identified and mapped to
112 genomic regions. Among these, the most promising regions, based on gene
annotations from the Zhangshugang reference genome®*, will be further investigated to
identify candidate genes and to elucidate the complex mechanisms underlying these
traits.

QTL analyses

Quantitative Trait Locus (QTL) analysis in biparental populations represents a classical
yet powerful approach for dissecting the genetic architecture of complex traits. Unlike
genome-wide association studies (GWAS), which exploit natural diversity, QTL mapping
relies on controlled crosses between two parental lines differing for one or more target
traits. The resulting segregating population allows the detection of genomic regions
associated with phenotypic variation under a defined genetic background.
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Common biparental populations used in plantsinclude F,, backcross (BC), recombinant
inbred lines (RILs), doubled haploids (DH), and near-isogenic lines (NILs). Each design
offers distinct advantages:

 F,and BC: quick to develop and suitable for detecting major-effect loci.

¢ RILs and DH: provide stable, immortal populations ideal for multi-environment
evaluation and fine mapping.

¢ NiILs: allow validation of individual QTLs in uniform backgrounds.

High-density genetic linkage maps are constructed using molecular markers (SNPs,
SSRs, DArTseq). Recombination fractions between markers are converted into genetic
distances (in centiMorgans, cM) using mapping functions such as Kosambi or Haldane.
Popular software for linkage map construction include:

e JoinMap®’, R/qtl*®, and MSTMap®.

Example R code for linkage map construction (R/gtl):
library(gtl)

cross <- read.cross (format="csv", file="cross data.csv",
genotypes=c ("AA","AB", "BB"))

cross <- est.rf (cross)

cross <- est.map(cross)

plotMap (cross)

QTL mapping models the relationship between marker genotype and trait phenotype
across the genome.

Several statistical approaches are widely used:

o Single-marker analysis (SMA): tests each marker individually, simple but limited
in power.

e Simple Interval Mapping (SIM): estimates QTL position between adjacent
markers using likelihood ratios or LOD scores.

o Composite Interval Mapping (CIM) and Multiple QTL Mapping (MQM): improve
resolution by incorporating background markers as cofactors.

¢ Mixed models (MLM/QTL-seq): integrate kinship or population structure
corrections, applicable to complex pedigrees or bulk-segregant sequencing data.

Example CIM command in R/qgtl:

cim results <- cim(cross, n.marcovar=5, window=10)
summary (cim results)

plot (cim results)

[37]



PRO-GRACE (101094738)

Permutation tests (usually 1,000-10,000 iterations) are used to define genome-wide LOD
thresholds at a given significance level (typically a = 0.05). Confidence intervals for QTL
positions are estimated using 1- or 2-LOD drop methods, corresponding approximately
to 95% confidence regions.

Detected QTLs are characterized by additive, dominant, and epistatic effects, as well as
by the percentage of phenotypic variance explained (PVE). Co-localization with
annotated genes or functional variants from genome assemblies enables candidate
gene identification and biological interpretation.

Conclusion

Deliverable D3.5 successfully demonstrates the implementation and integration of
bioinformatic methods and analytical pipelines essential for the characterization and
exploitation of plant genetic resources within the PRO-GRACE framework. The activities
carried out confirm the feasibility and robustness of standardized workflows for variant
discovery, population structure and kinship assessment, gap analysis, and genome-
wide association and QTL mapping.

Through the integration of established software tools and reproducible pipelines, the
deliverable provides a practical framework to harmonize data processing and analysis
across different crops, genebanks, and research institutions. The developed methods
ensure data quality, interoperability, and comparability, supporting the long-term goal of
building a cohesive European plant genetic resource community.

The demonstration activities conducted on tomato and pepper core collections
validated the pipelines’ performance on real datasets. They provided results for genetic
diversity assessment, identification of population structure and kinship patterns, and
discovery of loci associated with key agronomic traits. These examplesillustrate how the
proposed computational approaches can support breeding programs, germplasm
management, and conservation strategies.

D3.5 also shows that given the complexity of bioinformatic analyses and the
computational resources required, it is neither practical nor efficient for individual
European genebanks to perform such tasks independently. Centralizing these activities
within two or more dedicated hubs of the GRACE infrastructure in Europe ensures the
availability of specialized expertise, standardized environments, and high-performance
computing capacity. This distributed-yet-coordinated model allows for scalability and
redundancy, while maintaining harmonized analytical standards across sites. By
concentrating bioinformatic efforts in a limited number of well-equipped centers, the
infrastructure can guarantee data quality, reproducibility, and methodological
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consistency, ultimately enabling genebanks to fully benefit from advanced genomic
analyses without the need for local technical infrastructures.

Deviations

None.
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