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Executive Summary 
Deliverable D3.5 presents the implementation and demonstration of advanced 
bioinformatic workflows and services supporting the characterization and exploitation of 
plant genetic resources in Europe. The work focuses on developing and validating 
standardized pipelines for variant discovery, genotypic data filtering, population 
structure and kinship estimation, gap analyses of genetic diversity, and association 
mapping (GWAS and QTL). 

The deliverable provides comprehensive protocols for SNP and structural variant calling 
using next-generation sequencing (NGS) data, leveraging established tools such as 
GATK, DeepVariant, and bcftools. Detailed filtering strategies are described to ensure 
high-quality variant datasets suitable for downstream analyses. Both hard filtering and 
machine-learning–based methods (VQSR) are evaluated to optimize accuracy across 
different crop datasets. 

Population genetic analyses are demonstrated through the estimation of population 
structure and kinship matrices, employing approaches such as PCA, ADMIXTURE/sNMF, 
and VanRaden’s method. These analyses enable robust control of confounding factors 
in genomic studies and the identification of duplicates or closely related accessions 
within genebank collections. 

A gap analysis framework is presented to assess the representativeness of germplasm 
collections with respect to nucleotide diversity. Using the G2P-SOL tomato core 
collection as a case study, the analysis quantifies how genetic diversity saturates with 
increasing sample size, offering a practical approach for identifying redundancy or 
missing diversity within collections. 

The deliverable further details a complete pipeline for Genome-Wide Association 
Studies (GWAS) and Quantitative Trait Locus (QTL) analyses. These pipelines integrate 
advanced statistical models implemented in GAPIT3 (including MLM, FarmCPU, and 
BLINK) and standard QTL mapping software (R/qtl, JoinMap). Demonstration activities 
using the Capsicum (pepper) G2P-SOL core collection showcase the identification of 
genomic regions linked to key agronomic and morphological traits across multiple 
environments. A total of 207 significant markers associated with 23 traits were identified, 
mapped to 112 genomic regions, and prioritized for candidate gene identification. 

Overall, D3.5 delivers a harmonized suite of bioinformatic methods, open workflows, 
and demonstrative case studies that strengthen Europe’s capacity for genomic 
characterization of plant genetic resources. 

D3.5 finally points out that due to the high complexity and computational demands of 
bioinformatic analyses, it is more effective to centralize these activities within a few 
specialized hubs of the GRACE infrastructure. This coordinated model provides the 
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necessary expertise, standardized workflows, and computing capacity, ensuring data 
quality, reproducibility, and consistency while allowing genebanks to benefit from 
advanced analyses without developing local infrastructures.   
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SNPs calling 
In modern genomics, the accurate interpretation of sequencing data relies heavily on two 
main steps: aligning sequencing reads to a reference genome and identifying genetic 
variants through variant calling. 

Raw sequencing data (typically in FASTQ format) undergo quality control to remove low-
quality sequences and technical artifacts. Tools such as FastQC1, Trimmomatic2, fastp3 
and Cutadapt4 are used to assess base quality, detect adapter contamination, and trim 
unwanted sequences.  

#example code for cleaning reads using fastp# 
fastp -i ${READ}_1.fq.gz -I ${READ}__2.fq.gz -o 

${READ}_clean_1.fq.gz -O ${READ}_clean_2.fq.gz 

Subsequently, cleaned reads must be aligned against a reference genome of the 
species. To perform an efficient alignment, the genome is pre-processed into an indexed 
format. Most aligners rely on either: 

• Burrows-Wheeler Transform (BWT): Used in tools like BWA-MEM5 and 
Bowtie26, this algorithm enables fast and memory-efficient exact and inexact 
string matching. 

• Hash-based indexing: Employed by older or specialized aligners, using fixed-
length k-mers for quick lookup. 

During alignment, each read is compared to the reference genome to find the best 
possible match, allowing for mismatches, insertions, deletions, or sequencing errors. 
The aligner outputs a SAM (a human-readable, plain-text format)/BAM (the binary, 
compressed version of SAM, optimized for storage and computational efficiency) file 
that contains alignment positions, mapping quality scores, and other metadata. The BAM 
file is subsequently sorted and indexed for downstream analyses. 

The most used aligners are: 

• BWA5: The most widely used aligner for short-read DNA sequencing (e.g., 
WGS/WES). It provides accurate alignment around indels and handles paired-end 
data efficiently. 

• BWA-MEM27 is an improved and faster version of the original BWA-MEM 
algorithm. It was developed by the Broad Institute as a drop-in replacement for 
BWA-MEM, designed to enhance performance while maintaining identical output. 

• BWA-MEME8 (BWA-MEM Enhanced) is a variant of BWA-MEM specifically 
designed to improve alignment accuracy around long insertions and deletions 
(indels). 
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• Bowtie26: Optimized for speed and memory usage, suitable for small genomes 
and high-throughput applications, though less accurate for clinical variant 
detection. 

• Minimap29: Designed for long-read sequencing (e.g., PacBio, Oxford Nanopore), 
offering fast and accurate mapping for both genomic and transcriptomic reads. 

• HISAT210 and STAR11: Splice-aware aligners primarily used for RNA-seq data to 
identify exon-exon junctions accurately. 

#example code for bwa and short reads# 

bwa index $REF 

bwa mem -t ${THREADS} ${REF} ${READ}_clean_1.fq.gz 

${READ}_clean_2.fq.gz | samtools view -@ ${THREADS} -b - | 

samtools sort -@ ${THREADS} -o ${OUT}.sorted.bam  

samtools index ${OUT}.sorted.bam 

#example code for minimap2 and PacBio long reads# 

minimap2 -ax map-pb -t ${THREADS} ${REF} ${READS}.fq.gz | 

samtools view -@ ${THREADS} -b - | samtools sort -@ ${THREADS} 

-o ${OUT}.sorted.bam –  

samtools index ${OUT}.sorted.bam 

After alignment, marking PCR duplicates with tools like Picard12 or Sambamba13 is 
typically performed to prepare data for variant calling. Marking PCR duplicates is 
mandatory for WGS, while for reduced representation sequencing methodologies like 
SPET and GBS, it should be avoided. 

#example code for MarkDuplicates # 

GATK MarkDuplicates --java-options -Xmx30g -I 

${OUT}.sorted.bam -O ${OUT}.md.bam -M ${OUT}.metrics.txt 

Once reads are aligned, the next step is to identify variants in the genome where the 
sample differs from the reference. These include single nucleotide polymorphisms 
(SNPs), insertions and deletions (indels), and structural variants (SVs). 

 

 

 

The main Variant Calling Tools are: 
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• GATK HaplotypeCaller14: Performs local haplotype reassembly to accurately 
detect SNPs and indels. It is included in the GATK suite and supports joint 
genotyping of multiple samples and is the gold standard in many pipelines. 

• DeepVariant15: A deep learning-based caller developed by Google, known for high 
accuracy in both germline and somatic variant calling. 

• FreeBayes16: A Bayesian variant caller suitable for pooled and multisample 
datasets. It is robust in detecting complex alleles and indels. 

• bcftools17: A lightweight tool built on Samtools for simple variant calling from 
pileups, useful in fast or low-resource settings. 

• Strelka218 and Octopus19: High-performance callers that balance speed and 
accuracy, particularly strong in detecting somatic variants and low-frequency 
alleles. 

• Clair320: A neural network-based caller optimized for long-read sequencing 
technologies. 

#example code for GATK with multiple samples# 

GATK HaplotypeCaller -R ${REF} -I ${OUT}.md.bam -O 

${OUT}.g.vcf.gz -ERC GVCF 

 

GATK HaplotypeCaller -R ${REF} -I ${OUT2}.md.bam -O 

${OUT2}.g.vcf.gz -ERC GVCF 

GATK GenomicsDBImport --genomicsdb-workspace-path my_database 

--sample-name-map sample_map.txt --intervals intervals.list --

batch-size 50 

GATK GenotypeGVCFs -R ${REF} -V gendb://my_database -O 

cohort.vcf.gz 

#example code for DeepVariant with multiple samples with 

glnexus for merging cohorts of gvcf# 

 

$DEEPVARIANT_BIN --model_type=WGS –ref=${REF} –

reads=${OUT}.md.bam --output_vcf=${OUT}.vcf.gz --

output_gvcf=${OUT}.g.vcf.gz --num_shards=${THREADS} 

 

$DEEPVARIANT_BIN --model_type=WGS –ref=${REF} –

reads=${OUT2}.md.bam --output_vcf=${OUT2}.vcf.gz --

output_gvcf=${OUT2}.g.vcf.gz --num_shards=${THREADS} 

glnexus_cli --config DeepVariantWGS --threads ${THREADS} --

list “GVCF_LIST_FILE” > cohort_merged.vcf 
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Structural Variant Calling 
Structural Variants (SVs) are large-scale genomic alterations that involve segments of 
DNA typically greater than 50 base pairs in length. They include a variety of genomic 
rearrangements such as deletions, duplications, insertions, inversions, and 
translocations. Structural variants can significantly impact gene function and regulation 
by disrupting coding sequences, altering gene dosage, or modifying regulatory regions. 
As a result, they play a crucial role in diversity, evolution, and disease susceptibility. 

Detecting large-scale genomic rearrangements requires specialized tools, including: 

• Manta21, Delly222, Lumpy23, SvABA24, Dysgu25, Parliament226: Suitable for short-
read SV detection. 

• Sniffles227, cuteSV28 and SVIM29: Tailored for long-read sequencing data. 

These tools leverage discordant read pairs, split reads, and read depth signals to identify 
deletions, duplications, inversions, and translocations. 

Filters for genotypic data 
High-throughput technologies (see D3.2) are used to obtain genetic information, or 
genotypes, for each accession. The most common type of genetic variant analyzed is the 
Single Nucleotide Polymorphism (SNP), a location in the genome where a single base 
of the DNA sequence varies among individuals. Millions of SNPs distributed across the 
entire genome are typically genotyped for each sample. 

Genotyping providers typically apply initial Quality Control (QC) procedures that are 
specific to the technology used. For Next-Generation Sequencing (NGS), standard 
protocols involve removing loci with low sequencing depth (i.e., supported by an 
insufficient number of reads) and loci with low PHRED-like quality scores (Q), where Q 
indicates the probability of an incorrect base call.  

While necessary, these provider-level QC steps are insufficient on their own to prevent 
bias and spurious signals in genotype-trait association tests. Consequently, the 
investigator must implement a series of additional, more stringent QC measures. These 
supplementary procedures include filtering steps that are standard for any diversity, 
population structure and GWA analyses, as well as those adapted to the specific 
population structure of the study.  

Basic filtering for GATK suite 

These filters are exclusive of the GATK and must be applied only when using this pipeline 

• Base Quality Score Recalibration (BQSR) 

With this method, implemented in GATK, systematic errors in sequencer-
produced base quality scores are empirically characterized and corrected to 
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enhance variant calling accuracy. The process begins with the BaseRecalibrator 
module, which analyzes aligned sequencing reads (e.g., in BAM/CRAM format) 
alongside a database of known variant sites. By evaluating covariates such as 
read group, reported quality score, cycle (position in read), and sequence context 
(dinucleotide), the tool builds an empirical error model that reflects sequencing 
biases and machine-specific artifacts. Subsequently, ApplyBQSR uses the 
recalibration table generated by BaseRecalibrator to adjust base quality scores 
across the dataset, outputting a recalibrated BAM or CRAM file suitable for 
downstream analysis. For quality control, the AnalyzeCovariates tool can 
produce before-and-after plots to visualize the effects of recalibration and assess 
model performance. 

BQSR is strongly recommended for workflows where base quality scores may be 
systematically biased, common in high-throughput sequencing platforms such as 
Illumina, PacBio, and others. In best-practice pipelines, it is considered an 
optional but highly advisable step, as it typically improves variant calling 
accuracy, especially in germline sequencing with standard or high coverage.  

In the absence of known variant resources, such as experiments involving non-
model organisms, BQSR may still be applied via a bootstrapping strategy, 
whereby an initial variant set is generated without BQSR, filtered for high 
confidence, and then used as a provisional known-sites resource for recalibration 
in subsequent rounds. It is noteworthy, however, that in certain contexts, such as 
when using variant callers like DeepVariant trained on raw data, or in low-
coverage datasets, the benefits of BQSR may be minimal or context-dependent. 

• Variant Quality Score Recalibration (VQSR)  

Variant Quality Score Recalibration (VQSR) is a refined, machine-learning–based 
method to filter variant calls by learning multi-dimensional annotation profiles 
from high confidence known variant sets and differentiating true variants from 
artifacts. Rather than applying rigid, unidimensional thresholds, VQSR constructs 
a Gaussian mixture model (GMM) to characterize the distribution of variant 
annotations, such as Quality by Depth (QD), Mapping Quality (MQ), Strand Odds 
Ratio (SOR), Fisher Strand (FS), ReadPosRankSum, among others, for both “true” 
and “false” variant classes. The tool VariantRecalibrator builds this model using 
overlapping sites between the callset and well-curated resources (e.g., HapMap, 
Omni, 1000 Genomes), and then assigns each variant a VQSLOD score, the log-
odds ratio of being a true variant versus an artifact, based on its annotation profile. 
Users can then specify a target sensitivity, for instance aiming to retain 99% of 
known true positives, to set cutoffs that balance sensitivity and specificity, 
typically visualized via tranche plots. This enables nuanced filtering that captures 
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complex annotation interactions, akin to tracing contour lines around mountain-
top clusters in a multi-dimensional annotation space. 

VQSR is most effective for large-scale germline variant callsets, where ample 
variant data and high-quality training resources enable robust model fitting. It is 
the recommended best practice when performing whole-exome or whole-
genome analyses with joint-called samples, as the substantial number of 
variants allows the Gaussian mixture model to distinguish true signals from noise 
reliably. However, for small datasets, such as single-sample or targeted panels 
with few variants, VQSR may fail to converge, and extensive manual tuning (e.g., 
reducing the number of Gaussians with --maxGaussians) might be required, 
though often hard-filtering remains the more practical choice. Crucially, VQSR 
requires robust, well-validated truth resources; in contexts lacking such 
resources, non-model organisms or novel experimental designs, hard-filtering or 
bootstrapped methods may still be preferable. When properly applicable, VQSR 
delivers a flexible, data-driven filtration framework that elegantly adapts to data 
characteristics and delivers maximized accuracy in variant classification. 

GATK hard filter 

The hard-filtering approach in GATK entails applying fixed numeric thresholds to one or 
more variant annotation metrics (e.g., QualByDepth, FisherStrand, StrandOddsRatio, 
RMSMappingQuality, MappingQualityRankSum, ReadPosRankSum) and rejecting any 
variant that fails to comply with these criteria. This method involves evaluating each 
annotation independently, resulting in variants being filtered out if even one metric 
exceeds (or falls below) the preset threshold; this unidimensional filtering can potentially 
exclude true positive variants or retain false positives to preserve others. GATK provides 
tools such as VariantFiltration to implement hard-filtering, which flags variants in the 
VCF by populating the FILTER field with appropriate labels instead of deleting them 
outright. Typical thresholds recommended by GATK, for instance, QD < 2.0, FS > 60, SOR 
> 3, MQRankSum < –12.5, ReadPosRankSum < –8.0, are often suggested as starting 
points, with adjustments made based on visualization of the annotation value 
distributions in the specific dataset. 

Hard-filtering is particularly valuable when datasets lack sufficient size or high-quality 
known variant resources required for machine-learning-based strategies like VQSR 
(Variant Quality Score Recalibration). For example, targeted gene panels, exome 
subsets, non-model organisms, or small-scale sequencing experiments often yield too 
few variants to train reliable recalibration models, making hard-filtering the only practical 
alternative. In these contexts, custom thresholds, possibly informed through simulation 
or exploratory analysis, can enhance specificity without sacrificing sensitivity. Studies 
have recommended simulating variant datasets to derive optimized cutoffs, particularly 
for challenging variant types such as indels or in low-complexity regions, thereby tailoring 



PRO-GRACE (101094738)                                                                                                           
 

[12] 

filtering parameters to the experimental design. While VQSR remains the recommended 
best practice for large, well-resourced datasets, hard-filtering serves as a robust fallback 
or manual refinement mechanism when VQSR is infeasible or when analyses require 
sample-level or cohort-specific customization. 

#Hard filter SNPs# 

GATK SelectVariants  -R ${REF} -V cohort.vcf.gz --select-type-

to-include SNP -O cohort_snps.vcf.gz 

GATK VariantFiltration -R ${REF} -V cohort_snps.vcf.gz --

filter-expression "QD < 2.0 || QUAL <30 || FS > 60.0 || MQ < 

40.0 || SOR > 4.0 || MQRankSum < -12.5 || ReadPosRankSum < -

8.0" --filter-name "SNP_FILTER" -O cohort_snps_tmp.vcf.gz 

GATK SelectVariants -R ${REF} -V cohort_snps_tmp.vcf.gz -

exclude-filtered true -O cohort_snps_filtered.vcf.gz 

 

#Hard filter Indels# 

GATK SelectVariants -R ${REF} -V cohort.vcf.gz --select-type-

to-include INDEL -O cohort_indels.vcf.gz 

GATK VariantFiltration  -R ${REF} -V cohort_indels.vcf.gz --

filter-expression "QD < 2.0 || QUAL <30 || FS > 200.0 || 

ReadPosRankSum < -20.0" --filter-name "INDEL_FILTER" -O 

cohort_indels_tmp.vcf.gz 

GATK SelectVariants -R ${REF} -V cohort_indels_tmp.vcf.gz -

exclude-filtered true -O cohort_indels_filtered.vcf.gz 

 

#Merge SNPs and Indels vcf# 

GATK GatherVcfsCloud --cloud-prefetch-buffer 0 -I  

cohort_snps_filtered.vcf.gz -I cohort_indels_filtered.vcf.gz -

O cohort_snps_indels_filtered.tmp.vcf.gz 

GATK SortVcf -I cohort_snps_indels_filtered.tmp.vcf.gz -O 

cohort_snps_indels_filtered.final.vcf.gz 

 

Population structure/pedigree determination 
Understanding the population structure within a germplasm collection is essential to 
accurately interpret genetic diversity, assess redundancy, and control for confounding 
in downstream analyses such as GWAS or genomic prediction. Population structure 
refers to the presence of subgroups within the dataset that share a higher degree of 
relatedness due to geographic origin, domestication history, or selective breeding. 

Population structure is typically inferred using several complementary approaches: 

1. Principal Component Analysis (PCA) 
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PCA is a model-free, multivariate approach that summarizes genome-wide 
variation into orthogonal components (principal components, PCs). The first few 
PCs usually capture the main axes of genetic differentiation (e.g. between 
species, ecotypes, or breeding groups). For large genotypic datasets, the R 
package SNPRelate30 offers an efficient implementation of PCA using the GDS 
(Genomic Data Structure) format, optimized for memory and computational 
speed. 

Example code (R): 

library(SNPRelate) 

 

# Convert VCF to GDS format 

vcf.fn <- "dataset_filtered.vcf.gz" 

gds.fn <- "dataset_filtered.gds" 

snpgdsVCF2GDS(vcf.fn, gds.fn, method="biallelic.only") 

 

# Open GDS file 

genofile <- snpgdsOpen(gds.fn) 

 

# Perform LD pruning to reduce redundancy 

set.seed(1000) 

snpset <- snpgdsLDpruning(genofile, ld.threshold=0.2) 

snpset.id <- unlist(snpset) 

 

# Run PCA on pruned SNPs 

pca <- snpgdsPCA(genofile, snp.id=snpset.id, num.thread=4) 

 

# Extract eigenvectors and variance explained 

pc.percent <- pca$varprop * 100 

tab <- data.frame(sample.id = pca$sample.id, 

                  EV1 = pca$eigenvect[,1], 

                  EV2 = pca$eigenvect[,2], 

                  EV3 = pca$eigenvect[,3], 

                  stringsAsFactors = FALSE) 

 

# Plot PCA 

plot(tab$EV1, tab$EV2, col="dodgerblue", pch=19, 

     xlab=paste0("PC1 (", round(pc.percent[1],1), "%)"), 

     ylab=paste0("PC2 (", round(pc.percent[2],1), "%)")) 

The resulting eigenvalues and eigenvectors can be visualized using R or Python to detect 
clustering patterns, which can then be included as covariates in GWAS to correct for 
stratification. 
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2. Model-based clustering methods aim to infer the ancestry composition of each 
individual by assuming a certain number of ancestral populations (K). Each 
individual’s genome is represented as a mixture of contributions from these 
populations. 

Traditionally, tools such as STRUCTURE31 and ADMIXTURE32 have been employed for 
this purpose. While STRUCTURE uses a Bayesian MCMC framework, ADMIXTURE relies 
on a maximum-likelihood approach, providing a faster estimation of ancestry 
proportions for large datasets. 

In recent years, the sNMF algorithm implemented in the R package LEA33 has become a 
preferred alternative for high-throughput genomic data, as it performs sparse non-
negative matrix factorization (NMF) to estimate ancestry coefficients without the 
computational burden of MCMC sampling. 

library(LEA) 

# Convert VCF file to geno format (0, 1, 2 coding) 

vcf2geno("dataset_filtered.vcf.gz", "dataset_filtered.geno") 

 

# Run sNMF for a range of K values (number of ancestral 

populations) 

project <- snmf("dataset_filtered.geno", K = 1:8, entropy = 

TRUE, repetitions = 3, project = "new") 

 

# Cross-entropy criterion to identify the optimal K 

plot(project, cex = 1.2, col = "dodgerblue4") 

 

# Choose the best run for the optimal K (e.g., K=4) 

best <- which.min(cross.entropy(project, K = 4)) 

qmatrix <- Q(project, K = 4, run = best) 

 

# Plot ancestry coefficients 

barplot(t(qmatrix), 

        col = rainbow(4), 

        border = NA, 

        xlab = "Individuals", 

        ylab = "Ancestry proportion") 

The cross-entropy criterion identifies the optimal number of clusters (K) corresponding 
to the minimum entropy value. The resulting Q-matrix summarizes the proportion of 
ancestry components for each individual and can be visualized as stacked barplots. 

This method provides accuracy comparable to ADMIXTURE but with substantially 
reduced runtime, making it particularly suitable for plant population genomics and for 
datasets derived from genebank accessions.  
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3. Discriminant Analysis of Principal Components (DAPC) Implemented in the R 
package adegenet34, DAPC combines PCA for data reduction and discriminant analysis 
to maximize between-group variation. It is particularly effective in plant populations 
showing both clonal and sexual reproduction. 

4. Phylogenetic and hierarchical clustering Tree-based methods (e.g. neighbor-
joining, UPGMA) are often used to visualize relationships between accessions based on 
genetic distances (Nei, Identity-by-State, or IBS). These trees allow identification of 
misclassified accessions or close duplicates within genebank datasets. 

Kinship 
Kinship estimation quantifies the degree of relatedness between individuals, reflecting 
the proportion of alleles shared due to common ancestry. Accurate kinship estimation is 
essential to control confounding effects of relatedness in GWAS, genomic prediction, 
and pedigree reconstruction. 

A kinship matrix (K) represents pairwise genomic relationships and can be computed 
using several methods: 

• VanRaden method35, implemented in GAPIT36, TASSEL37, and GEMMA38: 

𝐾 =
𝑍𝑍′

2∑𝑝𝑖(1 − 𝑝𝑖)
 

 

where 𝑍is the centered genotype matrix and 𝑝𝑖is the allele frequency at locus i. 

A wide range of tools are available for estimating kinship or genomic relationship 
matrices, each optimized for different data sizes, formats, and analytical purposes: 

Tool Method Input Speed Output format Typical use 

GAPIT3 (R) 
VanRaden, 
EMMA 

R data.frame Fast R matrix GWAS, GBLUP 

TASSEL IBS, Centered VCF / Hapmap Fast .txt / .csv GWAS 

GEMMA GRM PLINK .bed Very fast Binary matrix Mixed models 

GCTA 
GRM 
(VanRaden) 

PLINK .bed Fast .grm.bin 
Heritability, 
genomic 
prediction 

KING IBD / IBS PLINK .bed Very fast .kin0 table 
Pedigree 
inference 
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Tool Method Input Speed Output format Typical use 

AGHmatrix (R) 
VanRaden, 
Hybrid 

R matrix Fast R object 
Genomic 
selection 

rrBLUP (R) 
Additive G 
matrix 

Numeric matrix Fast R matrix 
BLUP / GBLUP 
models 

Example PLINK command for IBS-based kinship: 

plink2 --bfile INPUT --make-king-table --out kinship 

 

GEMMA – efficient GRM calculation: 

gemma -g genotypes.txt -p phenotype.txt -gk 1 -o kinship_gemma 

GCTA – VanRaden-based GRM: 

gcta64 --bfile genotypes --make-grm --out kinship_gcta 

KING – pedigree and duplicate detection: 

king -b genotypes.bed --kinship --prefix kinship_king 

 

When explicit pedigree records are unavailable, as often in genebank accessions, 
kinship matrices can be used to infer putative parental or sibling relationships. High 
pairwise kinship coefficients (>0.45) typically indicate duplicates or clonally propagated 
material, whereas values around 0.25 suggest half-sibs or parent–offspring 
relationships. 

In GWAS and genomic prediction, the kinship matrix is incorporated as a random effect 
to account for covariance among individuals. This reduces false positives caused by 
cryptic relatedness. In GAPIT3, the kinship matrix can be automatically computed and 
included in the mixed linear model (MLM) or compressed MLM (CMLM). 

Example in R: 

myGAPIT <- GAPIT( 

  Y = myY, 

  GD = myGD, 

  GM = myGM, 

  PCA.total = 4, 

  kinship.algorithm = "VanRaden", 

  model = "MLM" 

) 
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Finally, heatmaps of kinship matrix allow visual inspection of genetic relatedness 
patterns across accessions. Clusters of high relatedness may correspond to specific 
breeding lines, geographic groups, or recent selection bottlenecks. 

Gap analyses 
Genebanks and curated germplasm collections play a crucial role in safeguarding the 
genetic richness of crop species. However, the degree to which existing collections 
represent the full spectrum of a species’ genetic diversity remains uncertain. To address 
this, we developed an empirical framework to quantify the completeness of genetic 
collections with respect to nucleotide diversity (π). This parameter provides a direct, 
quantitative measure of average pairwise sequence differences among accessions. It is 
robust to missing data, scalable across genomic regions, and can be readily computed 
from standard SNP-level VCF files. As such, π represents a practical and biologically 
meaningful indicator for assessing genetic diversity completeness. 

Demonstration activity: gap analysis in the tomato G2P-SOL core collection 

The approach builds upon high-throughput genotyping data derived from whole-genome 
sequencing (WGS). Using tomato (Solanum lycopersicum) as a test case, we analyzed 
approximately 350 accessions sequenced at high coverage (~20×). 

To assess diversity completeness, we generated random subsets of increasing size 
(ranging from 20 to 300 accessions) and calculated global nucleotide diversity (π) using 
the software Pixy39. For each sampling size, we computed the mean and standard 
deviation of π across 20 independent replicates.  

Overall, the potential advantages of this approach are: 

• Assessment of collection completeness, identifying whether a core set 
adequately represents total species diversity. 

• Comparison across genebanks, to evaluate the relative comprehensiveness of 
their holdings. 

• Detection of redundancy or conservation gaps, guiding future acquisition and 
curation efforts. 

The resulting saturation curve should describe how genetic diversity increases with 
sample size. When the curve approaches a plateau, the collection can be considered to 
capture most of the species’ nucleotide diversity. The preliminary results (Fig. 1) suggest 
i) that the π reaches a plateau at a relatively low number of accessions (60); ii) that the 
method needs a finer tuning of markers used (in terms of MAF filter, missing data, SNPs 
in coding or non-coding regions, etc.) to be carried out.  

 



PRO-GRACE (101094738)                                                                                                           
 

[18] 

 

Figure 1. Rarefaction-based assessment of nucleotide diversity (π) in tomato accessions. Each point represents the 
mean nucleotide diversity estimated from multiple random subsamplings of increasing collection size. The curve 
illustrates how genetic diversity accumulates with sample size, approaching a plateau that indicates the 
completeness of the collection in capturing species-wide variation. 

Genome wide association (GWA) study 
Genome-Wide Association Study (GWAS) is a powerful, hypothesis-free approach used 
to identify associations between specific genetic variants and a particular trait or 
phenotype. This method systematically scans the entire genome of a large number of 
individuals to identify genetic markers that are statistically correlated with the trait of 
interest. While initially used in human genetics, the principles of GWAS are universally 
applicable across diverse species, including plants, animals, and microbes, to 
investigate the genetic basis of complex traits. 

The heart of a GWAS is the statistical test for association. For each SNP, a test is 
performed to determine if there is a statistically significant difference in its allele 
frequencies between phenotypic groups. For a binary trait, this might be a chi-squared 
test, while for a quantitative trait, linear regression is commonly used. The model tests if 
the presence of a particular allele at a given SNP is predictive of the trait value. The 
fundamental model can be expressed as: 

Phenotype∼β⋅SNP+Covariates+ϵ 
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where β represents the effect size of the SNP and the model often includes covariates to 
control for confounding factors. 

Correction for Confounding Factors: To avoid spurious associations, GWAS must 
account for population structure and cryptic relatedness. Population structure refers 
to systematic differences in allele frequencies between subpopulations, which can 
correlate with both genotype and phenotype, leading to false positives. Statistical 
methods, such as principal component analysis (PCA), are employed to correct these 
effects. 

Significance Thresholds and Visualization: Since a GWAS involves performing millions 
of simultaneous statistical tests, a stringent significance threshold is required to correct 
for multiple testing. The standard threshold is typically set at p-value < 5×10−8, known 
as the genome-wide significance level. The results are commonly visualized using a 
Manhattan plot, which displays the negative logarithm of the p-value for each SNP 
across each chromosome. Significant associations appear as "skyscrapers" that rise 
above the significance threshold. 

Several tools are currently available for Genome-Wide Association Analysis: 

PLINK40: A high-performance toolkit enabling efficient management of large-scale 
genotypic datasets. It provides modules for stringent quality control, univariate 
association tests, population structure correction, and basic visualization. Its 
robustness and scalability make it a baseline tool for GWA workflows. 

TASSEL37: Initially developed with a focus on plant genetics, TASSEL incorporates both 
single-locus and mixed-model association approaches. It allows the integration of 
genotypic, phenotypic, and environmental covariates, which is particularly valuable for 
agrigenomics and multi-environment trials. 

GEMMA38: A software package implementing linear mixed models (LMMs) for both 
univariate and multivariate association analyses. GEMMA is optimized for variance 
component estimation, thereby efficiently accounting for relatedness and population 
stratification. 

EMMAX41: A computationally efficient implementation of variance component models 
that leverages restricted maximum likelihood (REML) estimation. Its design allows for 
rapid analyses in very large datasets without compromising model accuracy. 

Of particular relevance is GAPIT3 (Genome Association and Prediction Integrated Tool, 
version 3)36, an R package providing a comprehensive and integrative framework for both 
association mapping and genomic prediction. GAPIT3 extends traditional models by 
incorporating state-of-the-art multi-locus and multi-trait approaches, thereby 
addressing the limitations of single-locus methods in terms of statistical power and false 
discovery control. Specifically, GAPIT3 integrates: 
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• General Linear Model (GLM) and Mixed Linear Model (MLM) as basic 
approaches. 

• Compressed Mixed Linear Model (CMLM) and Enriched CMLM (ECMLM) to 
improve computational efficiency and statistical power in high-dimensional data. 

• FarmCPU42 (Fixed and random model Circulating Probability Unification), a multi-
locus algorithm that iteratively incorporates significant markers as covariates, 
reducing confounding and enhancing detection power. 

• BLINK43 (Bayesian-information and Linkage-disequilibrium Iteratively Nested 
Keyway), a high-performance multi-locus model that leverages Bayesian 
information criteria and LD pruning for superior speed and precision in locus 
detection. 

The combination of these models within GAPIT3 provides a flexible and extensible 
analytical environment, enabling researchers to tailor the methodological framework to 
the genetic architecture of the traits under study and to the specific characteristics of 
their datasets. Consequently, GAPIT3 has become a reference platform for advanced 
GWA studies across plant, animal and human genetics. 

Additional filters on genotypic data for GWA  

Prior to conducting a genome-wide association analysis, it is essential to apply stringent 
quality control filters to SNPs and SVs to minimize the risk of spurious associations and 
ensure robust statistical inference. Standard filters typically include the removal of 
multiallelic variants, as well as those with a low call rate (e.g., <20%; take into account 
your sequencing depth, since low sequencing depth requires a higher call rate filter), 
which may indicate poor genotyping quality, and exclusion of variants with a minor allele 
frequency (MAF) below a chosen threshold (commonly 0.01 or 0.05), as rare variants 
often lack sufficient power in GWAS. Furthermore, markers that deviate significantly 
from Hardy–Weinberg equilibrium (HWE) in the population (e.g., p < 1e-6) could be 
excluded, since such deviations may suggest genotyping errors or population 
stratification. However, numerous other factors can lead to deviations from HWE, 
particularly because its assumptions are rarely fulfilled in natural populations44. As a 
result, excluding loci that deviate from HWE can significantly influence population 
genetic inferences. Marked deviations from HWE heterozygosity expectations may also 
result from repetitive genomic elements45. Additional factors frequently responsible for 
departures from HWE in natural populations include overlapping generations, non-
panmictic mating, deviations from diploidy, and very small effective population sizes. 
Moreover, genotype and single nucleotide polymorphism (SNP) calling methods can 
further contribute to such departures: genotype inference is often influenced by 
sequencing depth and by the mismatch thresholds used to call variants, both of which 
may reduce observed heterozygosity and consequently lead to deviations from HWE46.  
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Generally, removing markers according to HWE deviation can be done in open pollinating 
crops, although in crops the HWE assumption of random mating is not respected in 
presence of stratification (i.e. structure). Furthermore, loci under selection are not in 
HWE, so you might remove them for GWAS. This leads to be careful with this filter. A 
possible solution is then to remove SNPs showing an excess of heterozygosity. It is very 
important to apply this filter based on the level of expected heterozygosity in the species 
you are working with. 

Another critical aspect of variant-level quality control prior to GWAS concerns the depth 
of sequencing (DP). Variants with extremely low coverage are prone to high genotype 
uncertainty and elevated error rates, while those with excessively high coverage may 
reflect mapping artifacts or repetitive regions. To mitigate these issues, SNPs are 
typically filtered by enforcing minimum and maximum depth thresholds (e.g., 
excluding genotypes with DP <10 to avoid false heterozygotes, and removing variants 
with mean DP exceeding 2/3 times the cohort average, which may indicate alignment 
artifacts).  

Depth-based filtering can be performed both at the per-genotype level (removing low-
confidence genotype calls within individuals) and at the per-variant level (excluding 
SNPs systematically under- or over-covered across samples). This ensures that retained 
variants are supported by sufficient, but not inflated, read evidence, thereby improving 
downstream genotype accuracy and association testing power.  

In addition to SNP-level filtering, rigorous sample-level quality control is required to 
ensure the integrity of the dataset prior to genome-wide association studies. A common 
first step is the exclusion of individuals with an excessive missing genotype rate (e.g., 
>5%), which may indicate poor DNA quality or technical artifacts. Further, 
heterozygosity outliers are excluded, as elevated or reduced genome-wide 
heterozygosity may signal contamination, inbreeding, or technical errors. 

Finally, since GWAS cannot deal with missing values, missing marker values need to be 
imputed before we can regress phenotypes on genotypes. Various options are available, 
including the mean imputation or using Beagle47 (based on Hidden Markov Model 
(HMM)). The former replaces missing marker calls by the mean value of the marker 
across the population. It is the fastest and simplest way to impute missing markers. An 
adequate method if the fraction of missing markers is very low and the marker density is 
high (i.e., genomic regions are represented by many markers).  

Beagle uses a localized haplotype clustering imputation algorithm. It makes use of a 
Hidden Markov Model (HMM) to find the most likely haplotype pair given the genotype 
data for that individual and the haplotype frequency in the population. Beagle is relatively 
user-friendly, accurate under default settings, well-supported, and widely used. It takes 
a vcf (also compressed). 
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#example code for additional filters on SNPs and indels vcf 

for GWA purpose# 

#left align variants and remove SNPs near indels 

bcftools norm -f “genome.fa” -O z -o OUTPUT_norm.vcf.gz --

threads 50 INPUT.vcf.gz 

bcftools view OUTPUT_norm.vcf.gz | bcftools filter -e 'AC==0 

|| AC==AN' --SnpGap 5 -O z -o OUTPUT_norm_no_5bpSNPS.vcf.gz --

threads 50  

# keep only biallelic SNPs and remove indels 

bcftools view -O z -o OUTPUT_norm_no_5bpSNPS_biallelic.vcf.gz 

-c 1 -m2 -M2 --types snps --threads 50 

OUTPUT_norm_no_5bpSNPS.vcf.gz 

#calculate depth of coverage on a per-basis level 

vcftools --gzvcf OUTPUT_norm_no_5bpSNPS_biallelic.vcf.gz --

site-mean-depth --out mean_depth 

 

#In R plot and get statistics of the depth at each site 
library(tidyverse) 
var_depth <- read_delim("mean_depth.ldepth.mean", delim = 

"\t", col_names = c("chr", "pos", "mean_depth", "var_depth"), 

skip = 1) 
summary(var_depth$mean_depth) 
png(filename="DP.png", width =300, height=300, units="mm", res 

= 300) 
ggplot(var_depth, aes(mean_depth)) + geom_density(fill = 

"dodgerblue1", colour = "black", alpha = 0.3)+ 
  theme_light()+ xlim(0, 50) 

+geom_vline(xintercept=mean(var_depth$mean_depth),color="red") 
dev.off() 

 

#Filter based on the depth of coverage and also based GQ 

parameter 

bcftools filter  -e 'MEAN(FMT/DP)<12' 

OUTPUT_norm_no_5bpSNPS_biallelic.vcf.gz | bcftools filter -e 

'MEAN(FMT/DP)>30' | bcftools filter  -S . -e 'FMT/GQ<20'  | 

bcftools filter -e 'AC==0 || AC==AN' -O z  -o 

OUTPUT_norm_no_5bpSNPS_biallelic_DP12_30_GQ.vcf.gz 

#calculate missingness at SNP level 

plink2  --vcf 
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OUTPUT_norm_no_5bpSNPS_biallelic_DP12_30_GQ.vcf.gz  --allow-

extra-chr –missing 

#In R plot and get statistics of the missing data at SNP level 

snpmiss<-read.table(file="plink2.vmiss", 

header=TRUE,comment.char = "")####This fle contains missing at 

SNP level, to USE 

summary(snpmiss$F_MISS) 

png(filename="missing.png", width =300, height=300, 

units="mm", res = 300) 

ggplot(snpmiss, aes(F_MISS)) + geom_density(fill = 

"dodgerblue1", colour = "black", alpha = 0.3)+xlim(0,0.3) 

dev.off() 

 

#filter at 5% of missing data at SNP level 

bcftools filter 

OUTPUT_norm_no_5bpSNPS_biallelic_DP12_30_GQ.vcf.gz  -e 

'N_MISSING>11' --threads 40 | bcftools filter -e 'AC==0 || 

AC==AN' -O z --threads 50 -o 

OUTPUT_norm_no_5bpSNPS_biallelic_DP12_30_GQ_MISSING5.vcf.gz 

#filter accessions with high percentage of missing data 

plink2  --vcf 

OUTPUT_norm_no_5bpSNPS_biallelic_DP12_30_GQ_MISSING5.vcf.gz --

allow-extra-chr --missing 

 

#In R plot and get statistics of the missing data at 

individual level 

library(tidyverse) 

indmiss<-read.table(file="plink2.smiss", 

header=TRUE,comment.char = "") 

ggplot(indmiss, aes(F_MISS)) + geom_density(fill = 

"dodgerblue1", colour = "black", alpha = 0.3)+xlim(0,0.6) 

#As an example, keep accessions with no more than 20% of 

missing data 

plink2  --vcf 

OUTPUT_norm_no_5bpSNPS_biallelic_DP12_30_GQ_MISSING5.vcf.gz --

allow-extra-chr  --set-missing-var-ids @:# --mind 0.2  --make-

bed --out 

OUTPUT_norm_no_5bpSNPS_biallelic_DP12_30_GQ_MISSING5_missing_i

nd20 
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#Filter out markers with a MAF < 0.05, exclude chromosome 0 

(not very useful for GWA) and save output as plink bed file 

plink2  --bfile 

OUTPUT_norm_no_5bpSNPS_biallelic_DP12_30_GQ_MISSING5 --allow-

extra-chr --not-chr 0 –maf 0.05 –make-bed --out 

OUTPUT_norm_no_5bpSNPS_biallelic_DP12_30_GQ_MISSING5_missing_i

nd20_MAF5 

#Filter highly heterozygous SNPs based on mean heterozygosity  

plink2  --bfile 

OUTPUT_norm_no_5bpSNPS_biallelic_DP12_30_GQ_MISSING5_missing_i

nd20_MAF5 --geno-counts 

 

In R plot and get statistics of the heterozygosity per site  

het_site <- read.table("plink2.gcount", head=TRUE, sep="\t", 

comment.char = "") 

het_site$HET_RATE = 

het_site$"HET_REF_ALT_CTS"/(het_site$"HOM_REF_CT" + 

het_site$"TWO_ALT_GENO_CTS"+het_site$"HET_REF_ALT_CTS") 

ggplot(het_site, aes(HET_RATE))+geom_density()+theme_bw() 

mean(het_site$HET_RATE) 

sd(het_site$HET_RATE) 

#####get sites with a heterozygosity higher than the mean plus 

2 SD 
het_fail_site = subset(het_site, (het_site$HET_RATE > 

mean(het_site$HET_RATE)+2*sd(het_site$HET_RATE))); 
write.table(het_fail_site, "fail-het_site-qc.txt", 

row.names=FALSE) 

 

# In bash: 

sed 's/"// g' fail-het_site-qc.txt | awk '{print$1, $2}'> 

het_fail_site.txt 

plink2 –bfile 

OUTPUT_norm_no_5bpSNPS_biallelic_DP12_30_GQ_MISSING5_missing_i

nd20_MAF5 --allow-extra-chr --exclude  het_fail_site.txt --

make-bed --out 

OUTPUT_norm_no_5bpSNPS_biallelic_DP12_30_GQ_MISSING5_missing_i

nd20_MAF5 _het_site 

 

#check the heterozygosity of your accessions. Keep in mind the 

species you are working with. Calculate heterozygosity per 
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individual by pruning SNPs matrix. Better to use independent 

SNPs 

plink2 –bfile 

OUTPUT_norm_no_5bpSNPS_biallelic_DP12_30_GQ_MISSING5_missing_i

nd20_MAF5 _het_site  --allow-extra-chr --indep-pairwise 50 5 

0.1 

#extract pruned SNPs and calculate heterozygosity on 

individual bases 

plink2 –bfile 

OUTPUT_norm_no_5bpSNPS_biallelic_DP12_30_GQ_MISSING5_missing_i

nd20_MAF5 --extract plink2.prune.in --het --make-bed --out 

OUTPUT_norm_no_5bpSNPS_biallelic_DP12_30_GQ_MISSING5_missing_i

nd20_MAF5_pruned 

 

In R, plot and get statistics of the heterozygosity per 

individual 

het -< 

read.table("OUTPUT_norm_no_5bpSNPS_biallelic_DP12_30_GQ_MISSIN

G5_missing_ind20_MAF5_pruned.het", head=TRUE, comment.char ="" 

) 

het$HET_RATE = (het$"OBS_CT" - het$"O.HOM.")/het$"OBS_CT" 

ggplot(het, aes(HET_RATE))+geom_density()+theme_bw() 

mean(het$HET_RATE) 

sd(het$HET_RATE) 

Remove individuals having, as example a mean + 3 SD het 

(contamination?) and -3SD (inbreeding?) 

het_fail = subset(het, (het$HET_RATE < mean(het$HET_RATE)-

3*sd(het$HET_RATE)) | (het$HET_RATE > 

mean(het$HET_RATE)+3*sd(het$HET_RATE))); 

het_fail$HET_DST = (het_fail$HET_RATE-

mean(het$HET_RATE))/sd(het$HET_RATE)##add deviation from the 

mean 

write.table(het_fail, "fail-het-qc.txt", row.names=FALSE) 

 

#In bash: 

sed 's/"// g' fail-het-qc.txt | awk '{print$1, $2}'> 

het_fail_ind.txt 

plink2 --bfile 

OUTPUT_norm_no_5bpSNPS_biallelic_DP12_30_GQ_MISSING5_missing_i

nd20_MAF5 --remove het_fail_ind.txt --make-bed --out 

OUTPUT_norm_no_5bpSNPS_biallelic_DP12_30_GQ_MISSING5_missing_i
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nd20_MAF5_NO_het_ind 

# Save as vcf al well 

plink2 –bfile 

OUTPUT_norm_no_5bpSNPS_biallelic_DP12_30_GQ_MISSING5_missing_i

nd20_MAF5_NO_het_ind --allow-extra-chr  --export vcf bgz --out 

VCF_for_LD 

 

An important step is to calculate linkage disequilibrium (LD) decay. It shows the 
relationship between R2 or Dprime on the y-axis and the distance between marker pairs 
on the x-axis to understand the pattern of  LD, which will be used later for QTL 
identification. One can use PopLDdecay in bash (https://github.com/BGI-
shenzhen/PopLDdecay) with a -MaxDist: 1 million bp.  

GWA analysis using GAPIT3 

Molecular markers 

#SNPs Imputation with Beagle 

plink2 --bfile 

OUTPUT_norm_no_5bpSNPS_biallelic_DP12_30_GQ_MISSING5_missing_i

nd20_MAF5_NO_het_ind --allow-extra-chr --export vcf bgz --out 

OUTPUT_norm_no_5bpSNPS_biallelic_DP12_30_GQ_MISSING5_missing_i

nd20_MAF5_NO_het_ind_BEAGLE 

#Imputation 

java -jar -Xmx30G beagle gt= 

OUTPUT_norm_no_5bpSNPS_biallelic_DP12_30_GQ_MISSING5_missing_i

nd20_MAF5_NO_het_ind_BEAGLE.vcf.gz out= 

OUTPUT_norm_no_5bpSNPS_biallelic_DP12_30_GQ_MISSING5_missing_i

nd20_MAF5_NO_het_ind_IMPUTED 

# Filter again for maf after imputation and save as  

plink2 --vcf 

OUTPUT_norm_no_5bpSNPS_biallelic_DP12_30_GQ_MISSING5_missing_i

nd20_MAF5_NO_het_ind_IMPUTED.vcf.gz  --allow-extra-chr --

export vcf bgz --maf 0.05 --out 

OUTPUT_norm_no_5bpSNPS_biallelic_DP12_30_GQ_MISSING5_missing_i

nd20_MAF5_NO_het_ind_IMPUTED _MAF 

# Write out in dosage format, i.e. 012 and setup files for 

GAPIT 

plink2 --vcf  

OUTPUT_norm_no_5bpSNPS_biallelic_DP12_30_GQ_MISSING5_missing_i

nd20_MAF5_NO_het_ind_IMPUTED_MAF.vcf.gz --export A --out 

OUTPUT_norm_no_5bpSNPS_biallelic_DP12_30_GQ_MISSING5_missing_i

nd20_MAF5_NO_het_ind_IMPUTED_MAF 

https://github.com/BGI-shenzhen/PopLDdecay
https://github.com/BGI-shenzhen/PopLDdecay
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# Write out in bed format 

plink2 --vcf  

OUTPUT_norm_no_5bpSNPS_biallelic_DP12_30_GQ_MISSING5_missing_i

nd20_MAF5_NO_het_ind_IMPUTED_MAF.vcf.gz --make-bed --out 

OUTPUT_norm_no_5bpSNPS_biallelic_DP12_30_GQ_MISSING5_missing_i

nd20_MAF5_NO_het_ind_IMPUTED_MAF 

 

#In R read in genotype file which we imputed before using 

Beagle in numeric format#### 

test=fread("OUTPUT_norm_no_5bpSNPS_biallelic_DP12_30_GQ_MISSIN

G5_missing_ind20_MAF5_NO_het_ind_IMPUTED_MAF.raw", head=T) 

test1=test[, -c(1,3:6)] #remove unwanted columns 

fwrite(test1, file=" 

OUTPUT_norm_no_5bpSNPS_biallelic_DP12_30_GQ_MISSING5_missing_i

nd20_MAF5_NO_het_ind_IMPUTED_MAF.raw", quote=FALSE, sep="\t", 

nThread = 8, dec=".") 

###Prepare SNP information for GAPIT with ID SNPs 

myGD=read.table("OUTPUT_norm_no_5bpSNPS_biallelic_DP12_30_GQ_M

ISSING5_missing_ind20_MAF5_NO_het_ind_IMPUTED_MAF.bim") 

myGD_final=myGD%>%select(V2,V1,V4)%>%rename(Name=V2,Chromosome

=V1,Position=V4 ) 

write.table(myGD_final, file=" 

OUTPUT_norm_no_5bpSNPS_biallelic_DP12_30_GQ_MISSING5_missing_i

nd20_MAF5_NO_het_ind_IMPUTED_MAF_snp_information", 

sep="\t",row.names = F, quote=F) 

Phenotypic data Processing for GWA 

The reliability and interpretability of Genome-Wide Association (GWA) results strongly 
depend on the quality and statistical properties of the phenotypic data used as input. In 
plant genetics, phenotypic datasets are often derived from multi-environment trials, 
replicated experimental designs, and high-throughput phenotyping platforms. This 
complexity requires careful data preprocessing and standardization before association 
analysis. 

Phenotypic data must first undergo rigorous quality control procedures. Outlier 
detection is performed to identify measurements that deviate markedly from the 
distribution of the trait within a given environment or replicate, which may result from 
measurement errors, environmental stress events, or recording inconsistencies. 
Outliers can be removed or, when appropriate, replaced using best linear unbiased 
estimates (BLUEs) or predictors (BLUPs) derived from mixed models. 

Many GWA methods assume that phenotypic values approximate a normal distribution. 
Traits exhibiting skewness, kurtosis, or bounded distributions (e.g., percentage traits, 
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counts, or scores) may violate this assumption. In such cases, statistical 
transformations (e.g., logarithmic, square-root, Box-Cox, or rank-based inverse normal 
transformation) are applied to improve normality and stabilize variance. The choice of 
transformation depends on the underlying biological meaning of the trait and must 
preserve interpretability of results. 

Plant phenotypes are typically collected across multiple blocks, environments, and 
years. To account for these sources of variation, linear mixed models are used to 
partition phenotypic variance into genetic and environmental components. This 
adjustment improves trait heritability estimates and reduces noise from uncontrolled 
environmental heterogeneity. The resulting BLUEs or BLUPs provide standardized trait 
values that can be directly used in downstream GWA analyses. 

 

#R code for normalization and BLUPs for a single trait with 

multiple environments using inti and BestNormalize48 packages 
feno=read.delim(file = "Pheno_3_ENVs_outliers.txt", header=T) 
feno$reps<-as.factor(feno$reps) 
feno$Env<-as.factor(feno$Env) 
feno_ENV=feno %>% mutate_at(c(2), as.numeric) 
feno_ENV$names<-rownames(feno_ENV)  
 
ggplot(feno_ENV, aes(x=Trait4,color=Env)) + 

geom_density()+theme_bw() 
ggplot(feno_ENV, aes(y=Trait4,color=Env)) + 

geom_boxplot()+theme_bw() 
#Check and remove outliers 
rmout <- outliers_remove(data = feno_ENV, trait ="Trait4" , 

model = "1 + (1|reps:Env) + (1|ID)+(1|Env) +  (1|ID:Env)") 
rmout$outliers 
outlier_4=rmout$outliers 
outlier_4$names <- rownames(outlier_4) 
feno4_no_outliers=feno_ENV%>%anti_join(outlier_4, 

by="names")#remove outliers based on rownames 
#Normalization after outliers removal 
(BNobject <- bestNormalize(feno4_no_outliers$Trait4)) 
orderNorm <- orderNorm(feno4_no_outliers$Trait4) 
orderNorm 
p <- predict(orderNorm) 
x2 <- predict(orderNorm, newdata = p, inverse = TRUE) 
pdf=data.frame(p) 
pdf_renamed=rename(pdf, trait4_norma =p) 
feno4_no_outliers_norma <- cbind(feno4_no_outliers, 
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pdf_renamed) 
hr <- H2cal(data = feno4_no_outliers_norma, trait = 

"trait4_norma", gen.name = "ID", rep.n = 3,env.n=3,env.name = 

"Env", fixed.model = "0 + (1|reps) + ID+(1|Env)   (1|ID:Env)" 

, random.model = "1 +  (1|ID)+(1|Env/reps) +  (1|ID:Env)" , 

emmeans = F, plot_diag = TRUE , outliers.rm = FALSE) 
hr$model %>% summary() 
hr$tabsmr 
BLUPs=hr$BLUPs 
write.table(BLUPs,file="Trait4_MET.txt", row.names = F, 

quote=F, sep="\t") 

 

GWA with GAPIT3 and Blink 

To mitigate confounding due to population structure or cryptic relatedness, individuals 
with unexpected kinship coefficients (e.g., duplicate or closely related samples) are 
identified and pruned, typically using identity-by-descent (IBD) analysis. Additionally, 
principal component analysis (PCA) is routinely applied to detect population outliers 
that deviate substantially from the main study cohort, as these may inflate false-positive 
associations if left unaddressed. 

GAPIT3 calculates both kinship matrix and PCA according to the model used. For a 
detailed description of the procedures see “Kinship/population structure” section. As a 
rule of thumb, one can prepare a PCA on SNPs data and check the appropriate numbers 
of components to use in the GAPIT analysis.  

 

 

#R code for GWA analysis using the raw SNPs matrix previously 

obtained as well as the BLUPs for a trait measured in multiple 

environments 

# Read in genotype file which we imputed before using Beagle 

in numeric format 

test=fread("OUTPUT_norm_no_5bpSNPS_biallelic_DP12_30_GQ_MISSIN

G5_missing_ind20_MAF5_NO_het_ind_IMPUTED_MAF.raw", head=T) 

test1=test[, -c(1,3:6)] #remove unwanted columns 

fwrite(test1, file=" 

OUTPUT_norm_no_5bpSNPS_biallelic_DP12_30_GQ_MISSING5_missing_i

nd20_MAF5_NO_het_ind_IMPUTED_MAF_OK.raw", quote=FALSE, 

sep="\t", nThread = 8, dec=".") 

###Prepare SNP information for GAPIT with ID SNPs 

myGD=read.table("OUTPUT_norm_no_5bpSNPS_biallelic_DP12_30_GQ_M
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ISSING5_missing_ind20_MAF5_NO_het_ind_IMPUTED_MAF_OK.bim") 

myGD_final=myGD%>%select(V2,V1,V4)%>%rename(Name=V2,Chromosome

=V1,Position=V4 ) 

write.table(myGD_final, file=" 

OUTPUT_norm_no_5bpSNPS_biallelic_DP12_30_GQ_MISSING5_missing_i

nd20_MAF5_NO_het_ind_IMPUTED_MAF_OK_snp_information", 

sep="\t",row.names = F, quote=F) 

myY=read.delim("Trait4_MET.txt", head=T) 

myGD <- 

fread("OUTPUT_norm_no_5bpSNPS_biallelic_DP12_30_GQ_MISSING5_mi

ssing_ind20_MAF5_NO_het_ind_IMPUTED_MAF_OK.raw", head = T) 

myGM<-

read.table("OUTPUT_norm_no_5bpSNPS_biallelic_DP12_30_GQ_MISSIN

G5_missing_ind20_MAF5_NO_het_ind_IMPUTED_MAF_OK_snp_informatio

n", head=T) 

#myGM$Chromosome<-as.numeric(myGM$Chromosome) 

#Running GAPIT3 with Blink with 0 PCA components as covariates 

myGAPIT <- GAPIT( Y=myY,  GD=myGD, GM=myGM, 

SNP.fraction=0.2,  SNP.test = T,  PCA.total=0,  PCA.3d=FALSE,  

Inter.Plot=TRUE,   Multiple_analysis=FALSE,   model=c("Blink")

,   file.output = TRUE) 

 

Statistical Procedures for Determining Significance in GWA 

Genome-wide association (GWA) studies typically test a very large number of genetic 
markers (from several hundred thousand to millions) for association with phenotypic 
traits. This massive multiple-testing burden makes it essential to apply appropriate 
statistical procedures to distinguish true associations from spurious results. Several 
complementary approaches are employed to determine statistical significance, each 
with advantages and limitations. 

1. Bonferroni and Šidák Corrections (Family-wise Error Rate Control) 

The Bonferroni49 method sets the genome-wide significance threshold by dividing the 
nominal α (e.g. 0.05) by the number of independent tests. 

• Example: with 1,000,000 SNPs, the Bonferroni threshold is p < 0.05 / 1,000,000 = 
5 × 10^−8. 

• This threshold has become a de facto standard in human GWAS, corresponding 
approximately to the number of independent common variants in European 
populations. 
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• The Šidák50 correction (α_i = 1 − (1 − α)^(1/m)) is slightly less conservative, but both 
assume independence among tests, which is not fully satisfied due to linkage 
disequilibrium (LD). 

2. False Discovery Rate (FDR) Control 

The False Discovery Rate (FDR) approach, most commonly via the Benjamini-Hochberg 
procedure51, controls the expected proportion of false positives among the declared 
significant associations. 

• Example: setting FDR q = 0.05 means that, on average, 5% of the reported 
significant SNPs are expected to be false positives. 

• This approach is more powerful than Bonferroni, particularly for traits controlled 
by many loci with small effects, as often observed in plants. 

• FDR thresholds are data-dependent: for instance, in a maize GWAS with ~500,000 
SNPs, the cut-off may fall around p < 10^−5 depending on the observed 
distribution of test statistics. 

3. Permutation-Based Thresholds 

Permutation testing provides empirical thresholds by randomly permuting phenotypes 
relative to genotypes, recalculating test statistics, and estimating the null distribution52. 

• Example: in a plant GWAS with 100,000 SNPs and 1,000 permutations, the 5% 
empirical genome-wide significance threshold might correspond to the minimum 
p-value observed across permutations, often lying around p ≈ 10^−5 rather than 
the much more stringent Bonferroni threshold of 5 × 10^−7. 

• This method accounts for marker correlation due to LD and can be less 
conservative than Bonferroni, but it is computationally intensive. 

4. Effective Number of Independent Tests 

Because of LD, the number of independent tests is smaller than the raw number of SNPs. 
Estimating the effective number of tests (M_eff) provides a less stringent, but still 
rigorous, threshold. 

• Example: in rice GWAS with 400,000 SNPs, the effective number of independent 
markers may be ~100,000. The Bonferroni-adjusted threshold would then be 0.05 
/ 100,000 = 5 × 10^−7, less conservative than the naïve 0.05 / 400,000 = 1.25 × 
10^−7. 

5. Hybrid and Weighted Procedures 

More advanced procedures integrate prior knowledge (e.g. genomic annotation, minor 
allele frequency, functional relevance) to adaptively weight tests. 
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• Example: SNPs in coding or regulatory regions may be given higher weight, 
leading to a less stringent threshold (e.g. p < 10^−6) for these variants compared 
to intergenic SNPs. 

• Such methods can substantially increase the power to detect biologically 
relevant loci while controlling type I error rates. 

6. q-value approach for FDR control in GWA 

The q-value procedure53 provides an extension of the False Discovery Rate (FDR) 
framework. While the Benjamini–Hochberg51 (BH) method controls FDR at a predefined 
threshold q (e.g. 0.05), the q-value method estimates, for each test, the minimum FDR at 
which the test may be called significant. 

• Interpretation: the q-value of a SNP can be interpreted as the expected 
proportion of false positives among all associations at least as significant as that 
SNP. 

• Practical use: instead of reporting a fixed cut-off (e.g. p < 1 × 10^−5), researchers 
can report all SNPs with q-value < 0.05, ensuring that, on average, no more than 
5% of these associations are false discoveries. 

• Advantages: 

o Provides SNP-specific FDR estimates rather than a single global threshold. 

o More powerful than conservative FWER methods (Bonferroni, Šidák). 

o Particularly suitable for polygenic traits in plants, where numerous 
small-effect loci may be detected. 

• Limitations: 

o Requires accurate estimation of the proportion of true null hypotheses 
(π0), which may be challenging in some datasets. 

o Results can be influenced by p-value distributional properties, especially 
in structured populations or under strong LD. 

#R code for threshold determination using gapit output 
results_t4=fread(file = 

"GAPIT.Blink.trait4_norma.GWAS.Results.csv", header=T, 

sep=",") 
####Bonferroni##### 
number_comparison=nrow(results_t1) 
bonferroni_threshold=0.05/number_comparison 

bonferroni_threshold_LOG=-log10(bonferroni_threshold) 
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results_t4_bonferroni<-

results_t4%>%filter(P.value<=bonferroni_threshold) 

###qvalue 

p_2 <- results_t4$P.value 

alpha <- 0.05 

qobj <- qvalue(p_2, fdr.level = alpha) 

summary(qobj)####see how many significant at p 0.05 

qobj$significant 

# find the significant pvalues at FDR level equal to alpha 

sp <- sort(qobj$pvalues) 

numbs <- sum(qobj$significant) 

s <- sp[numbs] 

ns <- sp[numbs+1] 

thr_nolog <- mean(c(s,ns)) 

thr <- mean(c(-log10(s),-log10(ns)))  

results_t4_FDR<-results_t4%>%filter(P.value<=thr_nolog) 

Demonstration activity: GWA in the pepper G2P-SOL core collection 
Core collection resequencing and SNP calling 

The G2P-SOL core collection of Capsicum spp., consisting of 423 accessions 
representing the genetic variability of a panel of 10,083 accessions, contains 393 C. 
annuum accessions and 32 accessions from other cultivated species; these include 16 
C. chinense, 4 C. frutescens, 7 C. baccatum, 1 C. chacoense, 1 C. praetermissum, and 
one unclassified accession. This collection underwent resequencing using the MGI 
platform at 20X coverage depth. Subsequently, the raw reads obtained from the 
sequencing step were aligned to the C. annuum cultivar Zhangshugang54 pepper 
reference genome using the BWA-MEM tool5. Following this, SNP and small indel calling 
was conducted using GATK14, yielding more than 300 million unfiltered variants. The raw 
variants were then filtered in accordance with the GATK Best Practices pipeline and 
bcftools, harvesting 31.328.757 high quality SNPs14,17. 
Analysis of the post-filtering marker set revealed a mean minor allele frequency (MAF) of 
20,7% and an average density of 10,36 markers/Kb. At the marker level, the dataset 
exhibited 2% missing data and a 2,1% rate of heterozygosity, the accessions displayed 
on average 2% missing data and a heterozygosity rate of 7,5%. 
 

Field trials and phenotyping 

Six independent field trials were conducted across different years and locations. One 
trial was performed by ARO in Israel (2020), one by BATEM in Türkiye (2020–2021), one by 
CREA in Italy (2019), and two by INRAE in France (2019–2020). WorldVeg conducted an 
additional trial in Taiwan (2020–2021). Seedlings were transplanted 5–7 weeks after 
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sowing in a randomized complete block design with two to three blocks and two to four 
plants per accession per block. Across trials, 23 agronomic traits based on pepper 
descriptors from the International Plant Genetic Resources Institute (IPGRI) were 
assessed. Of the 18 quantitative traits, 15 were recorded as continuous variables (e.g., 
axis length, Brix, fruit dimensions, plant height, pericarp thickness, total fruit weight) and 
three as discrete (flowering time, locule number, total fruit number). Among the five 
qualitative traits, three were ordinal (fruit fasciation, fruit load, immature fruit color) and 
two were binary (fruit pungency, predominant oblate fruit shape). The resulting field-trial 
data were then used to estimate best linear unbiased predictors (BLUPs), which served 
as input for the GWAS, using the R package inti55. 

C. annuum accessions and markers selected for GWAS 

The initial core collection, encompassing 423 accessions representative of the 
Capsicum genus, underwent a series of refinement steps. First, the collection was 
narrowed to 393 accessions specifically belonging to C. annuum. Subsequently, 
accessions exhibiting excessive heterozygosity, defined as those deviating by more than 
two standard deviations from the mean individual heterozygosity, were excluded. Further 
filtration removed accessions with over 20% missing markers. Additionally, accessions 
displaying multiple phenotypes in field trials or lacking phenotypic data were eliminated. 
This comprehensive selection process yielded a final set of 362 accessions, which will 
serve as the foundation for genome-wide association studies (GWAS). 
The final marker set composed of 17.404.615 SNPs, exhibited a mean density of 5,75 
markers per Kb, but not homogeneously distributed across the different chromosomes 
(Fig. 2); with an average minor allele frequency (MAF) of 21%. Heterozygosity rates were 
observed at 1.36%, while missing data at the marker level accounted for 1.3%, the 
accessions displayed on average 1.3% missing data and a heterozygosity rate of 3.4%. 



PRO-GRACE (101094738)                                                                                                           
 

[35] 

Figure 2 Marker density along the 12 chromosomes. The 12 pepper chromosomes are depicted as vertical bars. In 
each chromosome, the horizontal bars represent the gene density, while the red lines represent the SNP density.  

GWAS on 23 different traits 

Genome-wide association studies (GWAS) were performed on both single-environment 
and multi-environment BLUPs using the R package Genomic Association and Prediction 
Integrated Tool (GAPIT, Version 3)36. The BLINK model43 was applied to each trait, and 
results were corrected for relatedness using a kinship matrix calculated with the 
VanRaden formula, as well as for population structure by including the first four principal 
components estimated by GAPIT3. Circular Manhattan plots were generated with 
CMplot56, applying a Bonferroni threshold to control the false discovery rate (Fig. 3). 
Quantitative trait nucleotides (QTNs) detected across up to six environments were then 
merged, considering the previously estimated linkage disequilibrium (LD) decay for each 
chromosome (0.3–0.4 Mb). 
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Figure 3 Examples of highly robust QTLs identified in this study: (A) FLe (fruit length), with robust QTLs on chromosomes 
2, 8, and 10; (B) FShO (fruit predominant shape oblate), with robust QTLs on chromosomes 9 and 10; and (C) IFCG 
(external immature fruit color green), with a robust QTL on chromosome 1. In the circular Manhattan plots, each 
concentric ring represents a different environment, and in every ring the red line indicates the Bonferroni threshold. 

 
From the GWAS of the 23 traits, 207 significant markers were identified and mapped to 
112 genomic regions. Among these, the most promising regions, based on gene 
annotations from the Zhangshugang reference genome54, will be further investigated to 
identify candidate genes and to elucidate the complex mechanisms underlying these 
traits. 

QTL analyses 
Quantitative Trait Locus (QTL) analysis in biparental populations represents a classical 
yet powerful approach for dissecting the genetic architecture of complex traits. Unlike 
genome-wide association studies (GWAS), which exploit natural diversity, QTL mapping 
relies on controlled crosses between two parental lines differing for one or more target 
traits. The resulting segregating population allows the detection of genomic regions 
associated with phenotypic variation under a defined genetic background. 
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Common biparental populations used in plants include F₂, backcross (BC), recombinant 
inbred lines (RILs), doubled haploids (DH), and near-isogenic lines (NILs). Each design 
offers distinct advantages: 

• F₂ and BC: quick to develop and suitable for detecting major-effect loci. 

• RILs and DH: provide stable, immortal populations ideal for multi-environment 
evaluation and fine mapping. 

• NILs: allow validation of individual QTLs in uniform backgrounds. 

High-density genetic linkage maps are constructed using molecular markers (SNPs, 
SSRs, DArTseq). Recombination fractions between markers are converted into genetic 
distances (in centiMorgans, cM) using mapping functions such as Kosambi or Haldane. 
Popular software for linkage map construction include: 

• JoinMap57, R/qtl58, and MSTMap59. 

Example R code for linkage map construction (R/qtl): 

library(qtl) 

cross <- read.cross(format="csv", file="cross_data.csv", 

genotypes=c("AA","AB","BB")) 

cross <- est.rf(cross) 

cross <- est.map(cross) 

plotMap(cross) 

 

QTL mapping models the relationship between marker genotype and trait phenotype 
across the genome. 

Several statistical approaches are widely used: 

• Single-marker analysis (SMA): tests each marker individually, simple but limited 
in power. 

• Simple Interval Mapping (SIM): estimates QTL position between adjacent 
markers using likelihood ratios or LOD scores. 

• Composite Interval Mapping (CIM) and Multiple QTL Mapping (MQM): improve 
resolution by incorporating background markers as cofactors. 

• Mixed models (MLM/QTL-seq): integrate kinship or population structure 
corrections, applicable to complex pedigrees or bulk-segregant sequencing data. 

Example CIM command in R/qtl: 

cim_results <- cim(cross, n.marcovar=5, window=10) 

summary(cim_results) 

plot(cim_results) 
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Permutation tests (usually 1,000–10,000 iterations) are used to define genome-wide LOD 
thresholds at a given significance level (typically α = 0.05). Confidence intervals for QTL 
positions are estimated using 1- or 2-LOD drop methods, corresponding approximately 
to 95% confidence regions. 

Detected QTLs are characterized by additive, dominant, and epistatic effects, as well as 
by the percentage of phenotypic variance explained (PVE). Co-localization with 
annotated genes or functional variants from genome assemblies enables candidate 
gene identification and biological interpretation. 

Conclusion 
Deliverable D3.5 successfully demonstrates the implementation and integration of 
bioinformatic methods and analytical pipelines essential for the characterization and 
exploitation of plant genetic resources within the PRO-GRACE framework. The activities 
carried out confirm the feasibility and robustness of standardized workflows for variant 
discovery, population structure and kinship assessment, gap analysis, and genome-
wide association and QTL mapping. 

Through the integration of established software tools and reproducible pipelines, the 
deliverable provides a practical framework to harmonize data processing and analysis 
across different crops, genebanks, and research institutions. The developed methods 
ensure data quality, interoperability, and comparability, supporting the long-term goal of 
building a cohesive European plant genetic resource community. 

The demonstration activities conducted on tomato and pepper core collections 
validated the pipelines’ performance on real datasets. They provided results for genetic 
diversity assessment, identification of population structure and kinship patterns, and 
discovery of loci associated with key agronomic traits. These examples illustrate how the 
proposed computational approaches can support breeding programs, germplasm 
management, and conservation strategies. 

D3.5 also shows that given the complexity of bioinformatic analyses and the 
computational resources required, it is neither practical nor efficient for individual 
European genebanks to perform such tasks independently. Centralizing these activities 
within two or more dedicated hubs of the GRACE infrastructure in Europe ensures the 
availability of specialized expertise, standardized environments, and high-performance 
computing capacity. This distributed-yet-coordinated model allows for scalability and 
redundancy, while maintaining harmonized analytical standards across sites. By 
concentrating bioinformatic efforts in a limited number of well-equipped centers, the 
infrastructure can guarantee data quality, reproducibility, and methodological 
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consistency, ultimately enabling genebanks to fully benefit from advanced genomic 
analyses without the need for local technical infrastructures. 

Deviations 
None.  
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